罗马尼亚东喀尔巴阡山脉PM10来源识别和暴露评估

IF 3 4区 地球科学 Q2 ENVIRONMENTAL SCIENCES Journal of Atmospheric Chemistry Pub Date : 2021-04-14 DOI:10.1007/s10874-021-09421-0
Réka Boga, Ágnes Keresztesi, Zsolt Bodor, Szende Tonk, Róbert Szép, Miruna Mihaela Micheu
{"title":"罗马尼亚东喀尔巴阡山脉PM10来源识别和暴露评估","authors":"Réka Boga,&nbsp;Ágnes Keresztesi,&nbsp;Zsolt Bodor,&nbsp;Szende Tonk,&nbsp;Róbert Szép,&nbsp;Miruna Mihaela Micheu","doi":"10.1007/s10874-021-09421-0","DOIUrl":null,"url":null,"abstract":"<div><p>Observations of particulate matter less than 10 µm (PM<sub>10</sub>) were conducted from January to December in 2015 in the Ciuc basin, Eastern Carpathians, Romania. Daily concentrations of PM<sub>10</sub> ranged from 10.90 to 167.70 µg/m<sup>3</sup>, with an annual mean concentration of 46.31 µg/m<sup>3</sup>, which is higher than the European Union limit of 40 µg/m<sup>3</sup>. Samples were analyzed for a total of 21 elements. O, C and Si were the most abundant elements accounting for about 85% of the PM<sub>10</sub> mass. Source identification showed that the elemental composition of PM<sub>10</sub> is represented by post volcanic activity, crustal origin, and anthropogenic sources, caused by the resuspension of crustal material, sea salt and soil dust. The average PM<sub>10</sub> composition was 72.10% soil, 20.92% smoke K, 13.84% salt, 1.53% sulfate and 1.02% organic matter. The back-trajectory analysis showed that the majority of PM<sub>10</sub> pollution comes from the West, Southwest and South.</p></div>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"78 2","pages":"77 - 97"},"PeriodicalIF":3.0000,"publicationDate":"2021-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10874-021-09421-0","citationCount":"2","resultStr":"{\"title\":\"Source identification and exposure assessment to PM10 in the Eastern Carpathians, Romania\",\"authors\":\"Réka Boga,&nbsp;Ágnes Keresztesi,&nbsp;Zsolt Bodor,&nbsp;Szende Tonk,&nbsp;Róbert Szép,&nbsp;Miruna Mihaela Micheu\",\"doi\":\"10.1007/s10874-021-09421-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Observations of particulate matter less than 10 µm (PM<sub>10</sub>) were conducted from January to December in 2015 in the Ciuc basin, Eastern Carpathians, Romania. Daily concentrations of PM<sub>10</sub> ranged from 10.90 to 167.70 µg/m<sup>3</sup>, with an annual mean concentration of 46.31 µg/m<sup>3</sup>, which is higher than the European Union limit of 40 µg/m<sup>3</sup>. Samples were analyzed for a total of 21 elements. O, C and Si were the most abundant elements accounting for about 85% of the PM<sub>10</sub> mass. Source identification showed that the elemental composition of PM<sub>10</sub> is represented by post volcanic activity, crustal origin, and anthropogenic sources, caused by the resuspension of crustal material, sea salt and soil dust. The average PM<sub>10</sub> composition was 72.10% soil, 20.92% smoke K, 13.84% salt, 1.53% sulfate and 1.02% organic matter. The back-trajectory analysis showed that the majority of PM<sub>10</sub> pollution comes from the West, Southwest and South.</p></div>\",\"PeriodicalId\":611,\"journal\":{\"name\":\"Journal of Atmospheric Chemistry\",\"volume\":\"78 2\",\"pages\":\"77 - 97\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2021-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s10874-021-09421-0\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atmospheric Chemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10874-021-09421-0\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric Chemistry","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10874-021-09421-0","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 2

摘要

2015年1 - 12月在罗马尼亚东喀尔巴阡山脉的Ciuc盆地进行了10µm以下颗粒物(PM10)的观测。PM10日浓度范围为10.90 ~ 167.70µg/m3,年平均浓度为46.31µg/m3,高于欧盟规定的40µg/m3。样品共分析了21种元素。O、C和Si是最丰富的元素,约占PM10质量的85%。来源鉴定表明,PM10元素组成有火山后活动、地壳成因和地壳物质再悬浮、海盐和土壤尘埃等人为来源。PM10平均组成为土壤72.10%、烟K 20.92%、盐13.84%、硫酸盐1.53%、有机质1.02%。反轨迹分析显示,PM10污染主要来自西部、西南部和南部。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Source identification and exposure assessment to PM10 in the Eastern Carpathians, Romania

Observations of particulate matter less than 10 µm (PM10) were conducted from January to December in 2015 in the Ciuc basin, Eastern Carpathians, Romania. Daily concentrations of PM10 ranged from 10.90 to 167.70 µg/m3, with an annual mean concentration of 46.31 µg/m3, which is higher than the European Union limit of 40 µg/m3. Samples were analyzed for a total of 21 elements. O, C and Si were the most abundant elements accounting for about 85% of the PM10 mass. Source identification showed that the elemental composition of PM10 is represented by post volcanic activity, crustal origin, and anthropogenic sources, caused by the resuspension of crustal material, sea salt and soil dust. The average PM10 composition was 72.10% soil, 20.92% smoke K, 13.84% salt, 1.53% sulfate and 1.02% organic matter. The back-trajectory analysis showed that the majority of PM10 pollution comes from the West, Southwest and South.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Atmospheric Chemistry
Journal of Atmospheric Chemistry 地学-环境科学
CiteScore
4.60
自引率
5.00%
发文量
16
审稿时长
7.5 months
期刊介绍: The Journal of Atmospheric Chemistry is devoted to the study of the chemistry of the Earth''s atmosphere, the emphasis being laid on the region below about 100 km. The strongly interdisciplinary nature of atmospheric chemistry means that it embraces a great variety of sciences, but the journal concentrates on the following topics: Observational, interpretative and modelling studies of the composition of air and precipitation and the physiochemical processes in the Earth''s atmosphere, excluding air pollution problems of local importance only. The role of the atmosphere in biogeochemical cycles; the chemical interaction of the oceans, land surface and biosphere with the atmosphere. Laboratory studies of the mechanics in homogeneous and heterogeneous transformation processes in the atmosphere. Descriptions of major advances in instrumentation developed for the measurement of atmospheric composition and chemical properties.
期刊最新文献
Association between time of day and carbonaceous PM2.5 and oxidative potential in summer and winter in the Suncheon industrial area, Republic of Korea PM2.5 and PM10-related carcinogenic and non-carcinogenic risk assessment in Iran Characteristics of surface air quality over provincial capital cities in Northwestern China during 2013–2020 Stable isotopic, bulk, and molecular compositions of post-monsoon biomass-burning aerosols in Delhi suggest photochemical ageing during regional transport is more pronounced than local processing A review on sequential extraction of metals bound particulate matter and their health risk assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1