{"title":"泻湖泛滥平原可持续水资源管理的DPSIR框架和逻辑框架相结合的方法","authors":"Benchawan Teerakul, Chaiwat Rongsayamanont, Rotchanatch Darnsawasdi, Peerapat Kosolsaksakul","doi":"10.32526/ennrj/21/202200170","DOIUrl":null,"url":null,"abstract":"This article describes a combination of the driver-pressure-state-impact-response (DPSIR) framework and the logical framework approach (LFA) to develop water management strategies for a lagoon floodplain in Thailand. The DPSIR framework identified the cause-effect relationship between water and anthropogenic activities. LFA developed management strategies based on a systematic and logical approach. DPSIR analysis for the issue of water shortages for irrigated areas revealed the need for income from agriculture is a major driver, as indicated by agricultural development policy. The driver exerted pressure on increasing irrigation water demand, which increased the risk of a water shortage. The impact of water shortage was indicated by loss of farmer income. Existing responses led to inadequate problem-solving, for example, the promotion of mixed farming. Using data captured from DPSIR analysis for LFA analysis, proposed strategies to address the root causes of “ineffective irrigation water allocation” focused on improving (1) the performance of rotating irrigation systems; (2) monitoring water allocation; and (3) water use efficiency. The strategies developed using the combined DPSIR framework and LFA are effective because: (1) this method provides insight into complex water systems; (2) the strategies are developed logically to solve the problem at its root cause; and (3) there is intensive stakeholder participation and in-depth study of the area. This method is a helpful tool for developing a management strategy for a complex water system and is suitable for application by decision-makers. Stakeholder verification is required for future research to ensure that the strategies are appropriate and capable of being implemented.","PeriodicalId":11784,"journal":{"name":"Environment and Natural Resources Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Combined DPSIR Framework and Logical Framework Approach for Sustainable Water Resources Management in the Lagoon Floodplain\",\"authors\":\"Benchawan Teerakul, Chaiwat Rongsayamanont, Rotchanatch Darnsawasdi, Peerapat Kosolsaksakul\",\"doi\":\"10.32526/ennrj/21/202200170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article describes a combination of the driver-pressure-state-impact-response (DPSIR) framework and the logical framework approach (LFA) to develop water management strategies for a lagoon floodplain in Thailand. The DPSIR framework identified the cause-effect relationship between water and anthropogenic activities. LFA developed management strategies based on a systematic and logical approach. DPSIR analysis for the issue of water shortages for irrigated areas revealed the need for income from agriculture is a major driver, as indicated by agricultural development policy. The driver exerted pressure on increasing irrigation water demand, which increased the risk of a water shortage. The impact of water shortage was indicated by loss of farmer income. Existing responses led to inadequate problem-solving, for example, the promotion of mixed farming. Using data captured from DPSIR analysis for LFA analysis, proposed strategies to address the root causes of “ineffective irrigation water allocation” focused on improving (1) the performance of rotating irrigation systems; (2) monitoring water allocation; and (3) water use efficiency. The strategies developed using the combined DPSIR framework and LFA are effective because: (1) this method provides insight into complex water systems; (2) the strategies are developed logically to solve the problem at its root cause; and (3) there is intensive stakeholder participation and in-depth study of the area. This method is a helpful tool for developing a management strategy for a complex water system and is suitable for application by decision-makers. Stakeholder verification is required for future research to ensure that the strategies are appropriate and capable of being implemented.\",\"PeriodicalId\":11784,\"journal\":{\"name\":\"Environment and Natural Resources Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environment and Natural Resources Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32526/ennrj/21/202200170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment and Natural Resources Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32526/ennrj/21/202200170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
A Combined DPSIR Framework and Logical Framework Approach for Sustainable Water Resources Management in the Lagoon Floodplain
This article describes a combination of the driver-pressure-state-impact-response (DPSIR) framework and the logical framework approach (LFA) to develop water management strategies for a lagoon floodplain in Thailand. The DPSIR framework identified the cause-effect relationship between water and anthropogenic activities. LFA developed management strategies based on a systematic and logical approach. DPSIR analysis for the issue of water shortages for irrigated areas revealed the need for income from agriculture is a major driver, as indicated by agricultural development policy. The driver exerted pressure on increasing irrigation water demand, which increased the risk of a water shortage. The impact of water shortage was indicated by loss of farmer income. Existing responses led to inadequate problem-solving, for example, the promotion of mixed farming. Using data captured from DPSIR analysis for LFA analysis, proposed strategies to address the root causes of “ineffective irrigation water allocation” focused on improving (1) the performance of rotating irrigation systems; (2) monitoring water allocation; and (3) water use efficiency. The strategies developed using the combined DPSIR framework and LFA are effective because: (1) this method provides insight into complex water systems; (2) the strategies are developed logically to solve the problem at its root cause; and (3) there is intensive stakeholder participation and in-depth study of the area. This method is a helpful tool for developing a management strategy for a complex water system and is suitable for application by decision-makers. Stakeholder verification is required for future research to ensure that the strategies are appropriate and capable of being implemented.
期刊介绍:
The Environment and Natural Resources Journal is a peer-reviewed journal, which provides insight scientific knowledge into the diverse dimensions of integrated environmental and natural resource management. The journal aims to provide a platform for exchange and distribution of the knowledge and cutting-edge research in the fields of environmental science and natural resource management to academicians, scientists and researchers. The journal accepts a varied array of manuscripts on all aspects of environmental science and natural resource management. The journal scope covers the integration of multidisciplinary sciences for prevention, control, treatment, environmental clean-up and restoration. The study of the existing or emerging problems of environment and natural resources in the region of Southeast Asia and the creation of novel knowledge and/or recommendations of mitigation measures for sustainable development policies are emphasized. The subject areas are diverse, but specific topics of interest include: -Biodiversity -Climate change -Detection and monitoring of polluted sources e.g., industry, mining -Disaster e.g., forest fire, flooding, earthquake, tsunami, or tidal wave -Ecological/Environmental modelling -Emerging contaminants/hazardous wastes investigation and remediation -Environmental dynamics e.g., coastal erosion, sea level rise -Environmental assessment tools, policy and management e.g., GIS, remote sensing, Environmental -Management System (EMS) -Environmental pollution and other novel solutions to pollution -Remediation technology of contaminated environments -Transboundary pollution -Waste and wastewater treatments and disposal technology