Morgane Millot, F. Bertucci, D. Lecchini, S. Smeets, Malika René-Trouillefou, É. Parmentier
{"title":"加勒比珊瑚礁中灰鼻龙(Cuvier,1830)发声和相关咽颚的特征","authors":"Morgane Millot, F. Bertucci, D. Lecchini, S. Smeets, Malika René-Trouillefou, É. Parmentier","doi":"10.26496/BJZ.2021.84","DOIUrl":null,"url":null,"abstract":"The ability to produce sounds for acoustic communication is well known in different grunt species (Haemulidae). However, most of the sounds have not been described and the sound-producing mechanism of very few grunt species has been deeply studied. Additional data is needed to search for synapomorphy in the sonic mechanism. This study describes acoustic features and branchial anatomy in Haemulon aurolineatum . Correlations were found between some acoustic features and standard length, showing the largest specimens produced shorter, lower-pitched grunts of higher intensity. Examinations of acoustic features and branchial anatomy show that H. aurolineatum uses the same stridulatory mechanism described previously in H. flavolineatum . The unusual feature of Haemulon species concerns the fourth ceratobranchials. These appear to be part of the lower pharyngeal jaws since they possess firmly attached teeth that face the upper pharyngeal jaws. The stridulation results from the rubbing of both pharyngeal and fourth ceratobranchial teeth. This mechanism is probably common to the 23 Haemulon species, but additional information is needed regarding the mechanism of other Haemulinae species to produce stridulatory sounds. Fourth ceratobranchials could constitute a key element of Haemulinae ability to produce sounds providing an eventual synapomorphic aspect of the mechanism in the family.","PeriodicalId":8750,"journal":{"name":"Belgian Journal of Zoology","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Characteristics of sound production and associated pharyngeal jaws in the tomtate grunt Haemulon aurolineatum (Cuvier, 1830) in Caribbean reefs\",\"authors\":\"Morgane Millot, F. Bertucci, D. Lecchini, S. Smeets, Malika René-Trouillefou, É. Parmentier\",\"doi\":\"10.26496/BJZ.2021.84\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ability to produce sounds for acoustic communication is well known in different grunt species (Haemulidae). However, most of the sounds have not been described and the sound-producing mechanism of very few grunt species has been deeply studied. Additional data is needed to search for synapomorphy in the sonic mechanism. This study describes acoustic features and branchial anatomy in Haemulon aurolineatum . Correlations were found between some acoustic features and standard length, showing the largest specimens produced shorter, lower-pitched grunts of higher intensity. Examinations of acoustic features and branchial anatomy show that H. aurolineatum uses the same stridulatory mechanism described previously in H. flavolineatum . The unusual feature of Haemulon species concerns the fourth ceratobranchials. These appear to be part of the lower pharyngeal jaws since they possess firmly attached teeth that face the upper pharyngeal jaws. The stridulation results from the rubbing of both pharyngeal and fourth ceratobranchial teeth. This mechanism is probably common to the 23 Haemulon species, but additional information is needed regarding the mechanism of other Haemulinae species to produce stridulatory sounds. Fourth ceratobranchials could constitute a key element of Haemulinae ability to produce sounds providing an eventual synapomorphic aspect of the mechanism in the family.\",\"PeriodicalId\":8750,\"journal\":{\"name\":\"Belgian Journal of Zoology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Belgian Journal of Zoology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.26496/BJZ.2021.84\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Belgian Journal of Zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.26496/BJZ.2021.84","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ZOOLOGY","Score":null,"Total":0}
Characteristics of sound production and associated pharyngeal jaws in the tomtate grunt Haemulon aurolineatum (Cuvier, 1830) in Caribbean reefs
The ability to produce sounds for acoustic communication is well known in different grunt species (Haemulidae). However, most of the sounds have not been described and the sound-producing mechanism of very few grunt species has been deeply studied. Additional data is needed to search for synapomorphy in the sonic mechanism. This study describes acoustic features and branchial anatomy in Haemulon aurolineatum . Correlations were found between some acoustic features and standard length, showing the largest specimens produced shorter, lower-pitched grunts of higher intensity. Examinations of acoustic features and branchial anatomy show that H. aurolineatum uses the same stridulatory mechanism described previously in H. flavolineatum . The unusual feature of Haemulon species concerns the fourth ceratobranchials. These appear to be part of the lower pharyngeal jaws since they possess firmly attached teeth that face the upper pharyngeal jaws. The stridulation results from the rubbing of both pharyngeal and fourth ceratobranchial teeth. This mechanism is probably common to the 23 Haemulon species, but additional information is needed regarding the mechanism of other Haemulinae species to produce stridulatory sounds. Fourth ceratobranchials could constitute a key element of Haemulinae ability to produce sounds providing an eventual synapomorphic aspect of the mechanism in the family.
期刊介绍:
The Belgian Journal of Zoology is an open access journal publishing high-quality research papers in English that are original, of broad interest and hypothesis-driven. Manuscripts on all aspects of zoology are considered, including anatomy, behaviour, developmental biology, ecology, evolution, genetics, genomics and physiology. Manuscripts on veterinary topics are outside of the journal’s scope. The Belgian Journal of Zoology also welcomes reviews, especially from complex or poorly understood research fields in zoology. The Belgian Journal of Zoology does no longer publish purely taxonomic papers. Surveys and reports on novel or invasive animal species for Belgium are considered only if sufficient new biological or biogeographic information is included.