{"title":"广义极值分布变量的鲁棒logistic回归估计量的比较","authors":"Şaban Kızılarslan, Ceren Camkıran","doi":"10.3233/mas-210531","DOIUrl":null,"url":null,"abstract":"The aim of this study is to compare the performance of robust estimators in the presence of explanatory variables with Generalized Extreme Value (GEV) distributions in the logistic regression model. Existence of extreme values in the logistic regression model negatively affects the bias and effectiveness of classical Maximum Likelihood (ML) estimators. For this reason, robust estimators that are less sensitive to extreme values have been developed. Random variables with extreme values may be fit in one of specific distributions. In study, the GEV distribution family was examined and five robust estimators were compared for the Fréchet, Gumbel and Weibull distributions. To the simulation results, the CUBIF estimator is prominent according to both bias and efficiency criteria for small samples. In medium and large samples, while the MALLOWS estimator has the minimum bias, the CUBIF estimator has the best efficiency. The same results apply for different contamination ratios and different scale parameter values of the distributions. Simulation findings were supported by a meteorological real data application.","PeriodicalId":35000,"journal":{"name":"Model Assisted Statistics and Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of robust logistic regression estimators for variables with generalized extreme value distributions\",\"authors\":\"Şaban Kızılarslan, Ceren Camkıran\",\"doi\":\"10.3233/mas-210531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this study is to compare the performance of robust estimators in the presence of explanatory variables with Generalized Extreme Value (GEV) distributions in the logistic regression model. Existence of extreme values in the logistic regression model negatively affects the bias and effectiveness of classical Maximum Likelihood (ML) estimators. For this reason, robust estimators that are less sensitive to extreme values have been developed. Random variables with extreme values may be fit in one of specific distributions. In study, the GEV distribution family was examined and five robust estimators were compared for the Fréchet, Gumbel and Weibull distributions. To the simulation results, the CUBIF estimator is prominent according to both bias and efficiency criteria for small samples. In medium and large samples, while the MALLOWS estimator has the minimum bias, the CUBIF estimator has the best efficiency. The same results apply for different contamination ratios and different scale parameter values of the distributions. Simulation findings were supported by a meteorological real data application.\",\"PeriodicalId\":35000,\"journal\":{\"name\":\"Model Assisted Statistics and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Model Assisted Statistics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/mas-210531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Model Assisted Statistics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/mas-210531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Comparison of robust logistic regression estimators for variables with generalized extreme value distributions
The aim of this study is to compare the performance of robust estimators in the presence of explanatory variables with Generalized Extreme Value (GEV) distributions in the logistic regression model. Existence of extreme values in the logistic regression model negatively affects the bias and effectiveness of classical Maximum Likelihood (ML) estimators. For this reason, robust estimators that are less sensitive to extreme values have been developed. Random variables with extreme values may be fit in one of specific distributions. In study, the GEV distribution family was examined and five robust estimators were compared for the Fréchet, Gumbel and Weibull distributions. To the simulation results, the CUBIF estimator is prominent according to both bias and efficiency criteria for small samples. In medium and large samples, while the MALLOWS estimator has the minimum bias, the CUBIF estimator has the best efficiency. The same results apply for different contamination ratios and different scale parameter values of the distributions. Simulation findings were supported by a meteorological real data application.
期刊介绍:
Model Assisted Statistics and Applications is a peer reviewed international journal. Model Assisted Statistics means an improvement of inference and analysis by use of correlated information, or an underlying theoretical or design model. This might be the design, adjustment, estimation, or analytical phase of statistical project. This information may be survey generated or coming from an independent source. Original papers in the field of sampling theory, econometrics, time-series, design of experiments, and multivariate analysis will be preferred. Papers of both applied and theoretical topics are acceptable.