通过卷积神经网络预测采油树故障可能性,降低公用事业风险

IF 2.7 Q2 ENGINEERING, CIVIL Sustainable and Resilient Infrastructure Pub Date : 2023-07-10 DOI:10.1080/23789689.2023.2233759
Atanas Apostolov, Jimi B. Oke, Ryan Suttle, S. Arwade, B. Kane
{"title":"通过卷积神经网络预测采油树故障可能性,降低公用事业风险","authors":"Atanas Apostolov, Jimi B. Oke, Ryan Suttle, S. Arwade, B. Kane","doi":"10.1080/23789689.2023.2233759","DOIUrl":null,"url":null,"abstract":"ABSTRACT Critical to the resilience of utility power lines, tree failure assessments have historically been performed via costly manual inspections. In this paper, we develop a convolutional neural network (CNN) to predict tree failure likelihood categories (Probable, Possible, Improbable) under three classification strategies. The CNN produced the best performance under the Probable/Possible vs. Improbable strategy, achieving a recall score of 0.82. We also perform a visual analysis of the predictions via Grad-CAM++ heatmaps, indicating an approach for incorporating interpretability into model selection. Benchmarking the results of our model against those produced by two state-of-the-art CNNs (ResNet-50 and Inception-v3), we show that our relatively simple model produces better results in a computational time that is three times faster. Via this novel framework, we demonstrate the potential of artificial intelligence to automate and consequently reduce the costs of tree failure likelihood assessments in proximity to power lines, thereby promoting sustainable infrastructure.","PeriodicalId":45395,"journal":{"name":"Sustainable and Resilient Infrastructure","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting tree failure likelihood for utility risk mitigation via a convolutional neural network\",\"authors\":\"Atanas Apostolov, Jimi B. Oke, Ryan Suttle, S. Arwade, B. Kane\",\"doi\":\"10.1080/23789689.2023.2233759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Critical to the resilience of utility power lines, tree failure assessments have historically been performed via costly manual inspections. In this paper, we develop a convolutional neural network (CNN) to predict tree failure likelihood categories (Probable, Possible, Improbable) under three classification strategies. The CNN produced the best performance under the Probable/Possible vs. Improbable strategy, achieving a recall score of 0.82. We also perform a visual analysis of the predictions via Grad-CAM++ heatmaps, indicating an approach for incorporating interpretability into model selection. Benchmarking the results of our model against those produced by two state-of-the-art CNNs (ResNet-50 and Inception-v3), we show that our relatively simple model produces better results in a computational time that is three times faster. Via this novel framework, we demonstrate the potential of artificial intelligence to automate and consequently reduce the costs of tree failure likelihood assessments in proximity to power lines, thereby promoting sustainable infrastructure.\",\"PeriodicalId\":45395,\"journal\":{\"name\":\"Sustainable and Resilient Infrastructure\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable and Resilient Infrastructure\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23789689.2023.2233759\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable and Resilient Infrastructure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23789689.2023.2233759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting tree failure likelihood for utility risk mitigation via a convolutional neural network
ABSTRACT Critical to the resilience of utility power lines, tree failure assessments have historically been performed via costly manual inspections. In this paper, we develop a convolutional neural network (CNN) to predict tree failure likelihood categories (Probable, Possible, Improbable) under three classification strategies. The CNN produced the best performance under the Probable/Possible vs. Improbable strategy, achieving a recall score of 0.82. We also perform a visual analysis of the predictions via Grad-CAM++ heatmaps, indicating an approach for incorporating interpretability into model selection. Benchmarking the results of our model against those produced by two state-of-the-art CNNs (ResNet-50 and Inception-v3), we show that our relatively simple model produces better results in a computational time that is three times faster. Via this novel framework, we demonstrate the potential of artificial intelligence to automate and consequently reduce the costs of tree failure likelihood assessments in proximity to power lines, thereby promoting sustainable infrastructure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
10.20%
发文量
34
期刊介绍: Sustainable and Resilient Infrastructure is an interdisciplinary journal that focuses on the sustainable development of resilient communities. Sustainability is defined in relation to the ability of infrastructure to address the needs of the present without sacrificing the ability of future generations to meet their needs. Resilience is considered in relation to both natural hazards (like earthquakes, tsunami, hurricanes, cyclones, tornado, flooding and drought) and anthropogenic hazards (like human errors and malevolent attacks.) Resilience is taken to depend both on the performance of the built and modified natural environment and on the contextual characteristics of social, economic and political institutions. Sustainability and resilience are considered both for physical and non-physical infrastructure.
期刊最新文献
Impact-oriented risk management: guiding practitioners towards a resilient supply chain design Road surface damages allocation with RTI-IMS software based on YOLO V5 model Allocation and sizing of dispatchable distributed generators considering value addition in resiliency and sustainability of power delivery infrastructure Developing a social value model for Oman’s national infrastructure planning: a hermeneutical approach Measuring the economic and societal value of reliability/resilience investments: case studies of islanded communities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1