{"title":"荧光成像在区分害虫和非害虫物种中的潜力","authors":"S. Perryman, C. Shortall, K. Halsey, J. West","doi":"10.1564/v33_feb_05","DOIUrl":null,"url":null,"abstract":"Studying the presence and movement of insects is important in biological research for practical purposes regarding control of pests and environmental monitoring. Detection of insects by conventional trapping (e.g. the Rothamsted Insect Survey) and tracking technologies (e.g. the Rothamsted\n Radar Entomology Unit) have been effective for monitoring and forecasting pest migration but often require significant investment in capital costs and/or staff time. Insect detection using imaging of natural fluorescence (without additional fluorescent dyes) has been considered less, and much\n of the work on natural fluorescence in the animal world has been on marine organisms. Work on terrestrial arthropods has been more limited and restricted primarily to non-insect arthropods. Very early work on the distribution of fluorescent pigments in butterflies was demonstrated using long\n wave mercury vapour lamps followed by more work in the 1950s on butterflies, arthropods; including beetles, spiders and millipedes, cockroaches and eggs of Orthoptera. These studies often involved qualitative approaches; dissecting the animals and investigating internal organs and fluids for\n fluorescence as well as whole body studies. More recent studies have included quantitative work on butterflies and pest insects plus fluorescence studies in damselflies, moths, millipedes, bees and spiders. Fluorescence in juvenile stages is a property used for detection of flies and beetles\n in food stuffs. The vast majority of insects, however, have not been investigated for fluorescence and even in those taxa that have been studied, e.g. butterflies, the dataset is incomplete. The easiest way to observe fluorescence is to illuminate a subject with a known waveband of light in\n otherwise darkness and view or record an image via a filter that blocks the wavelength of the illuminating light. Any light viewed or captured at a different wavelength to the illumination, must have been produced by fluorescence. In contrast, some living organisms themselves can produce light\n or luminescence by internal chemical means. This work aimed to look at the potential of using natural fluorescence to detect and identify insects, particularly pests.","PeriodicalId":19602,"journal":{"name":"Outlooks on Pest Management","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Potential of Fluorescence Imaging to Distinguish Insect Pest and Non-pest Species\",\"authors\":\"S. Perryman, C. Shortall, K. Halsey, J. West\",\"doi\":\"10.1564/v33_feb_05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Studying the presence and movement of insects is important in biological research for practical purposes regarding control of pests and environmental monitoring. Detection of insects by conventional trapping (e.g. the Rothamsted Insect Survey) and tracking technologies (e.g. the Rothamsted\\n Radar Entomology Unit) have been effective for monitoring and forecasting pest migration but often require significant investment in capital costs and/or staff time. Insect detection using imaging of natural fluorescence (without additional fluorescent dyes) has been considered less, and much\\n of the work on natural fluorescence in the animal world has been on marine organisms. Work on terrestrial arthropods has been more limited and restricted primarily to non-insect arthropods. Very early work on the distribution of fluorescent pigments in butterflies was demonstrated using long\\n wave mercury vapour lamps followed by more work in the 1950s on butterflies, arthropods; including beetles, spiders and millipedes, cockroaches and eggs of Orthoptera. These studies often involved qualitative approaches; dissecting the animals and investigating internal organs and fluids for\\n fluorescence as well as whole body studies. More recent studies have included quantitative work on butterflies and pest insects plus fluorescence studies in damselflies, moths, millipedes, bees and spiders. Fluorescence in juvenile stages is a property used for detection of flies and beetles\\n in food stuffs. The vast majority of insects, however, have not been investigated for fluorescence and even in those taxa that have been studied, e.g. butterflies, the dataset is incomplete. The easiest way to observe fluorescence is to illuminate a subject with a known waveband of light in\\n otherwise darkness and view or record an image via a filter that blocks the wavelength of the illuminating light. Any light viewed or captured at a different wavelength to the illumination, must have been produced by fluorescence. In contrast, some living organisms themselves can produce light\\n or luminescence by internal chemical means. This work aimed to look at the potential of using natural fluorescence to detect and identify insects, particularly pests.\",\"PeriodicalId\":19602,\"journal\":{\"name\":\"Outlooks on Pest Management\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Outlooks on Pest Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1564/v33_feb_05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Outlooks on Pest Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1564/v33_feb_05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
The Potential of Fluorescence Imaging to Distinguish Insect Pest and Non-pest Species
Studying the presence and movement of insects is important in biological research for practical purposes regarding control of pests and environmental monitoring. Detection of insects by conventional trapping (e.g. the Rothamsted Insect Survey) and tracking technologies (e.g. the Rothamsted
Radar Entomology Unit) have been effective for monitoring and forecasting pest migration but often require significant investment in capital costs and/or staff time. Insect detection using imaging of natural fluorescence (without additional fluorescent dyes) has been considered less, and much
of the work on natural fluorescence in the animal world has been on marine organisms. Work on terrestrial arthropods has been more limited and restricted primarily to non-insect arthropods. Very early work on the distribution of fluorescent pigments in butterflies was demonstrated using long
wave mercury vapour lamps followed by more work in the 1950s on butterflies, arthropods; including beetles, spiders and millipedes, cockroaches and eggs of Orthoptera. These studies often involved qualitative approaches; dissecting the animals and investigating internal organs and fluids for
fluorescence as well as whole body studies. More recent studies have included quantitative work on butterflies and pest insects plus fluorescence studies in damselflies, moths, millipedes, bees and spiders. Fluorescence in juvenile stages is a property used for detection of flies and beetles
in food stuffs. The vast majority of insects, however, have not been investigated for fluorescence and even in those taxa that have been studied, e.g. butterflies, the dataset is incomplete. The easiest way to observe fluorescence is to illuminate a subject with a known waveband of light in
otherwise darkness and view or record an image via a filter that blocks the wavelength of the illuminating light. Any light viewed or captured at a different wavelength to the illumination, must have been produced by fluorescence. In contrast, some living organisms themselves can produce light
or luminescence by internal chemical means. This work aimed to look at the potential of using natural fluorescence to detect and identify insects, particularly pests.
期刊介绍:
Research and development in the crop protection and crop enhancement sector continues to grow at pace. Those associated with the agriculture and food industries, researchers in academia, government organisations, legislators, and professionals involved with the development and environmental impact of pesticides and biotechnology can all benefit from Outlooks on Pest Management. This bi-monthly journal provides a unique blend of international news and reviews covering all aspects of the management of weeds, pests and diseases through chemistry, biology and biotechnology.