贝叶斯环境下多变量纵向结果的成对估计及其对联合模型的扩展

IF 1.2 4区 数学 Q2 STATISTICS & PROBABILITY Statistical Modelling Pub Date : 2020-09-28 DOI:10.1177/1471082X20945069
K. Mauff, N. Erler, I. Kardys, D. Rizopoulos
{"title":"贝叶斯环境下多变量纵向结果的成对估计及其对联合模型的扩展","authors":"K. Mauff, N. Erler, I. Kardys, D. Rizopoulos","doi":"10.1177/1471082X20945069","DOIUrl":null,"url":null,"abstract":"Multiple longitudinal outcomes are theoretically easily modelled via extension of the generalized linear mixed effects model. However, due to computational limitations in high dimensions, in practice these models are applied only in situations with relatively few outcomes. We adapt the solution proposed by Fieuws and Verbeke (2006) to the Bayesian setting: fitting all pairwise bivariate models instead of a single multivariate model, and combining the Markov Chain Monte Carlo (MCMC) realizations obtained for each pairwise bivariate model for the relevant parameters. We explore importance sampling as a method to more closely approximate the correct multivariate posterior distribution. Simulation studies show satisfactory results in terms of bias, RMSE and coverage of the 95% credible intervals for multiple longitudinal outcomes, even in scenarios with more limited information and non-continuous outcomes, although the use of importance sampling is not successful. We further examine the incorporation of a time-to-event outcome, proposing the use of Bayesian pairwise estimation of a multivariate GLMM in an adaptation of the corrected two-stage estimation procedure for the joint model for multiple longitudinal outcomes and a time-to-event outcome (Mauff et al., 2020, Statistics and Computing). The method does not work as well in the case of the corrected two-stage joint model; however, the results are promising and should be explored further.","PeriodicalId":49476,"journal":{"name":"Statistical Modelling","volume":"21 1","pages":"115 - 136"},"PeriodicalIF":1.2000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1471082X20945069","citationCount":"4","resultStr":"{\"title\":\"Pairwise estimation of multivariate longitudinal outcomes in a Bayesian setting with extensions to the joint model\",\"authors\":\"K. Mauff, N. Erler, I. Kardys, D. Rizopoulos\",\"doi\":\"10.1177/1471082X20945069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiple longitudinal outcomes are theoretically easily modelled via extension of the generalized linear mixed effects model. However, due to computational limitations in high dimensions, in practice these models are applied only in situations with relatively few outcomes. We adapt the solution proposed by Fieuws and Verbeke (2006) to the Bayesian setting: fitting all pairwise bivariate models instead of a single multivariate model, and combining the Markov Chain Monte Carlo (MCMC) realizations obtained for each pairwise bivariate model for the relevant parameters. We explore importance sampling as a method to more closely approximate the correct multivariate posterior distribution. Simulation studies show satisfactory results in terms of bias, RMSE and coverage of the 95% credible intervals for multiple longitudinal outcomes, even in scenarios with more limited information and non-continuous outcomes, although the use of importance sampling is not successful. We further examine the incorporation of a time-to-event outcome, proposing the use of Bayesian pairwise estimation of a multivariate GLMM in an adaptation of the corrected two-stage estimation procedure for the joint model for multiple longitudinal outcomes and a time-to-event outcome (Mauff et al., 2020, Statistics and Computing). The method does not work as well in the case of the corrected two-stage joint model; however, the results are promising and should be explored further.\",\"PeriodicalId\":49476,\"journal\":{\"name\":\"Statistical Modelling\",\"volume\":\"21 1\",\"pages\":\"115 - 136\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/1471082X20945069\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Modelling\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1177/1471082X20945069\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modelling","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1177/1471082X20945069","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 4

摘要

通过广义线性混合效应模型的扩展,理论上可以很容易地对多个纵向结果进行建模。然而,由于高维的计算限制,在实践中,这些模型仅适用于结果相对较少的情况。我们将Fieuws和Verbeke(2006)提出的解决方案应用于贝叶斯设置:拟合所有成对的二变量模型而不是单个多变量模型,并将为每个成对的二元模型获得的马尔可夫链蒙特卡罗(MCMC)实现与相关参数相结合。我们探索重要性抽样作为一种更接近正确的多元后验分布的方法。模拟研究表明,即使在信息更有限和结果不连续的情况下,在多个纵向结果的偏倚、RMSE和95%可信区间的覆盖率方面也取得了令人满意的结果,尽管重要性抽样的使用并不成功。我们进一步研究了时间到事件结果的结合,建议在多个纵向结果和时间到事件的联合模型的校正两阶段估计程序的自适应中使用多变量GLMM的贝叶斯成对估计(Mauff et al.,2020,Statistics and Computing)。该方法在修正的两阶段联合模型的情况下效果不佳;然而,结果是有希望的,应该进一步探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pairwise estimation of multivariate longitudinal outcomes in a Bayesian setting with extensions to the joint model
Multiple longitudinal outcomes are theoretically easily modelled via extension of the generalized linear mixed effects model. However, due to computational limitations in high dimensions, in practice these models are applied only in situations with relatively few outcomes. We adapt the solution proposed by Fieuws and Verbeke (2006) to the Bayesian setting: fitting all pairwise bivariate models instead of a single multivariate model, and combining the Markov Chain Monte Carlo (MCMC) realizations obtained for each pairwise bivariate model for the relevant parameters. We explore importance sampling as a method to more closely approximate the correct multivariate posterior distribution. Simulation studies show satisfactory results in terms of bias, RMSE and coverage of the 95% credible intervals for multiple longitudinal outcomes, even in scenarios with more limited information and non-continuous outcomes, although the use of importance sampling is not successful. We further examine the incorporation of a time-to-event outcome, proposing the use of Bayesian pairwise estimation of a multivariate GLMM in an adaptation of the corrected two-stage estimation procedure for the joint model for multiple longitudinal outcomes and a time-to-event outcome (Mauff et al., 2020, Statistics and Computing). The method does not work as well in the case of the corrected two-stage joint model; however, the results are promising and should be explored further.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistical Modelling
Statistical Modelling 数学-统计学与概率论
CiteScore
2.20
自引率
0.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: The primary aim of the journal is to publish original and high-quality articles that recognize statistical modelling as the general framework for the application of statistical ideas. Submissions must reflect important developments, extensions, and applications in statistical modelling. The journal also encourages submissions that describe scientifically interesting, complex or novel statistical modelling aspects from a wide diversity of disciplines, and submissions that embrace the diversity of applied statistical modelling.
期刊最新文献
A statistical modelling approach to feedforward neural network model selection The Skellam distribution revisited: Estimating the unobserved incoming and outgoing ICU COVID-19 patients on a regional level in Germany A novel mixture model for characterizing human aiming performance data Fast, effective, and coherent time series modelling using the sparsity-ranked lasso Taking advantage of sampling designs in spatial small-area survey studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1