用于空气中氢气检测的固体氧化物安培传感器

IF 2.8 Q2 ENGINEERING, CHEMICAL ChemEngineering Pub Date : 2023-05-11 DOI:10.3390/chemengineering7030045
A. Kalyakin, A. Volkov, L. Dunyushkina
{"title":"用于空气中氢气检测的固体氧化物安培传感器","authors":"A. Kalyakin, A. Volkov, L. Dunyushkina","doi":"10.3390/chemengineering7030045","DOIUrl":null,"url":null,"abstract":"An amperometric sensor based on CaZr0.95Sc0.05O3−δ (CZS) proton-conducting oxide for the measurement of hydrogen concentration in air was designed and tested. Dense CZS ceramics were fabricated through uniaxial pressing the powder synthesized by the solid-state method and sintering at 1650 °C for 2 h. The conductivity of CZS was shown to increase with increasing air humidity, which indicates the proton type of conductivity. The sensor was made from two CZS plates, one of which had a cavity was drilled to form an inner chamber, that were then pressed against each other and sealed around the perimeter to prevent gas leaking. The inner chamber of the sensor was connected with the outer atmosphere via an alumina ceramic capillary, which acted as a diffusion barrier. The sensor performance was studied in the temperature range of 600–700 °C in the mixtures of air with hydrogen. The sensor signal, or the limiting current, was found to linearly increase with the hydrogen concentration, which simplifies the sensor calibration. The sensor demonstrated a high sensitivity of ~60 μA per 1% H2 at 700 °C, a fast response, high reproducibility, good selectivity, and long-term stability.","PeriodicalId":9755,"journal":{"name":"ChemEngineering","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solid-Oxide Amperometric Sensor for Hydrogen Detection in Air\",\"authors\":\"A. Kalyakin, A. Volkov, L. Dunyushkina\",\"doi\":\"10.3390/chemengineering7030045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An amperometric sensor based on CaZr0.95Sc0.05O3−δ (CZS) proton-conducting oxide for the measurement of hydrogen concentration in air was designed and tested. Dense CZS ceramics were fabricated through uniaxial pressing the powder synthesized by the solid-state method and sintering at 1650 °C for 2 h. The conductivity of CZS was shown to increase with increasing air humidity, which indicates the proton type of conductivity. The sensor was made from two CZS plates, one of which had a cavity was drilled to form an inner chamber, that were then pressed against each other and sealed around the perimeter to prevent gas leaking. The inner chamber of the sensor was connected with the outer atmosphere via an alumina ceramic capillary, which acted as a diffusion barrier. The sensor performance was studied in the temperature range of 600–700 °C in the mixtures of air with hydrogen. The sensor signal, or the limiting current, was found to linearly increase with the hydrogen concentration, which simplifies the sensor calibration. The sensor demonstrated a high sensitivity of ~60 μA per 1% H2 at 700 °C, a fast response, high reproducibility, good selectivity, and long-term stability.\",\"PeriodicalId\":9755,\"journal\":{\"name\":\"ChemEngineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemEngineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/chemengineering7030045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemEngineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/chemengineering7030045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

设计并测试了一种基于CaZr0.95Sc0.05O3-δ(CZS)质子传导氧化物的电流型空气中氢浓度传感器。通过单轴压制固态法合成的粉末并在1650°C下烧结2小时,制备了致密的CZS陶瓷。CZS的电导率随着空气湿度的增加而增加,这表明其电导率为质子型。该传感器由两块CZS板制成,其中一块板上钻有一个空腔,形成一个内腔,然后将其相互挤压并密封在周围,以防止气体泄漏。传感器的内腔通过充当扩散屏障的氧化铝陶瓷毛细管与外部大气连接。在空气和氢气的混合物中,在600–700°C的温度范围内研究了传感器的性能。发现传感器信号或极限电流随着氢气浓度线性增加,这简化了传感器校准。该传感器在700°C下每1%H2具有约60μa的高灵敏度、快速响应、高再现性、良好的选择性和长期稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Solid-Oxide Amperometric Sensor for Hydrogen Detection in Air
An amperometric sensor based on CaZr0.95Sc0.05O3−δ (CZS) proton-conducting oxide for the measurement of hydrogen concentration in air was designed and tested. Dense CZS ceramics were fabricated through uniaxial pressing the powder synthesized by the solid-state method and sintering at 1650 °C for 2 h. The conductivity of CZS was shown to increase with increasing air humidity, which indicates the proton type of conductivity. The sensor was made from two CZS plates, one of which had a cavity was drilled to form an inner chamber, that were then pressed against each other and sealed around the perimeter to prevent gas leaking. The inner chamber of the sensor was connected with the outer atmosphere via an alumina ceramic capillary, which acted as a diffusion barrier. The sensor performance was studied in the temperature range of 600–700 °C in the mixtures of air with hydrogen. The sensor signal, or the limiting current, was found to linearly increase with the hydrogen concentration, which simplifies the sensor calibration. The sensor demonstrated a high sensitivity of ~60 μA per 1% H2 at 700 °C, a fast response, high reproducibility, good selectivity, and long-term stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemEngineering
ChemEngineering Engineering-Engineering (all)
CiteScore
4.00
自引率
4.00%
发文量
88
审稿时长
11 weeks
期刊最新文献
Catalysts Based on Iron Oxides for Wastewater Purification from Phenolic Compounds: Synthesis, Physicochemical Analysis, Determination of Catalytic Activity Effect of Inserting Baffles on the Solid Particle Segregation Behavior in Fluidized Bed Reactor: A Computational Study Force Field for Calculation of the Vapor-Liquid Phase Equilibrium of trans-Decalin Antisolvent Crystallization of Papain Ultrafiltration to Increase the Consistency of Fruit Pulps: The Role of Permeate Flux
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1