S. Kera, Fumihiko Matsui, Kiyohisa Tanaka, Y. Taira, T. Araki, T. Ohigashi, H. Iwayama, M. Fujimoto, H. Matsuda, E. Salehi, M. Katoh
{"title":"未来光源设施的前景:以UVSOR同步加速器设施为例","authors":"S. Kera, Fumihiko Matsui, Kiyohisa Tanaka, Y. Taira, T. Araki, T. Ohigashi, H. Iwayama, M. Fujimoto, H. Matsuda, E. Salehi, M. Katoh","doi":"10.1088/2516-1075/acdf32","DOIUrl":null,"url":null,"abstract":"The synchrotron radiation facility is a large-scale public infrastructure that provides advanced light sources and is used for various academic research and application development. For 40 years, UVSOR Synchrotron Facility has been leading the field as a facility that has developed and utilized cutting-edge light source technology in the low-photon-energy regime. The next UVSOR aims to establish a center for quantum photon science research through the development of unexplored characterization technologies by advanced use of light sources and a measurement and analysis support environment. The science of molecular dynamics with spatio-temporal hierarchies for evaluating and controlling the functions of complex systems will be pioneered. The assets of UVSOR and the fundamental measurement and analysis technology of the Institute for Molecular Science will be inherited effectively and progressively. We plan to contribute to strengthening the foundation of many fundamental disciplines to create next-generation industrial applications.","PeriodicalId":42419,"journal":{"name":"Electronic Structure","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prospects required for future light-source facilities: a case of UVSOR synchrotron facility\",\"authors\":\"S. Kera, Fumihiko Matsui, Kiyohisa Tanaka, Y. Taira, T. Araki, T. Ohigashi, H. Iwayama, M. Fujimoto, H. Matsuda, E. Salehi, M. Katoh\",\"doi\":\"10.1088/2516-1075/acdf32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The synchrotron radiation facility is a large-scale public infrastructure that provides advanced light sources and is used for various academic research and application development. For 40 years, UVSOR Synchrotron Facility has been leading the field as a facility that has developed and utilized cutting-edge light source technology in the low-photon-energy regime. The next UVSOR aims to establish a center for quantum photon science research through the development of unexplored characterization technologies by advanced use of light sources and a measurement and analysis support environment. The science of molecular dynamics with spatio-temporal hierarchies for evaluating and controlling the functions of complex systems will be pioneered. The assets of UVSOR and the fundamental measurement and analysis technology of the Institute for Molecular Science will be inherited effectively and progressively. We plan to contribute to strengthening the foundation of many fundamental disciplines to create next-generation industrial applications.\",\"PeriodicalId\":42419,\"journal\":{\"name\":\"Electronic Structure\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Structure\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2516-1075/acdf32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Structure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1075/acdf32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Prospects required for future light-source facilities: a case of UVSOR synchrotron facility
The synchrotron radiation facility is a large-scale public infrastructure that provides advanced light sources and is used for various academic research and application development. For 40 years, UVSOR Synchrotron Facility has been leading the field as a facility that has developed and utilized cutting-edge light source technology in the low-photon-energy regime. The next UVSOR aims to establish a center for quantum photon science research through the development of unexplored characterization technologies by advanced use of light sources and a measurement and analysis support environment. The science of molecular dynamics with spatio-temporal hierarchies for evaluating and controlling the functions of complex systems will be pioneered. The assets of UVSOR and the fundamental measurement and analysis technology of the Institute for Molecular Science will be inherited effectively and progressively. We plan to contribute to strengthening the foundation of many fundamental disciplines to create next-generation industrial applications.