香樟油在羧甲基纤维素和乳铁蛋白形成的复合凝聚层中的包埋控制β-胡萝卜素的释放

IF 4.6 Q1 CHEMISTRY, APPLIED Food Hydrocolloids for Health Pub Date : 2022-12-01 DOI:10.1016/j.fhfh.2021.100047
Ahmad El Ghazzaqui Barbosa , Augusto Bene Tomé Constantino , Lívia Pinto Heckert Bastos , Edwin Elard Garcia-Rojas
{"title":"香樟油在羧甲基纤维素和乳铁蛋白形成的复合凝聚层中的包埋控制β-胡萝卜素的释放","authors":"Ahmad El Ghazzaqui Barbosa ,&nbsp;Augusto Bene Tomé Constantino ,&nbsp;Lívia Pinto Heckert Bastos ,&nbsp;Edwin Elard Garcia-Rojas","doi":"10.1016/j.fhfh.2021.100047","DOIUrl":null,"url":null,"abstract":"<div><p>This research studied the formation of complex coacervates formed by carboxymethylcellulose (CMC) and lactoferrin (Lf) as wall materials for encapsulation of β-carotene present in sacha inchi oil (SIO). According to zeta-potential and turbidimetric analyses, the optimum conditions for the formation of CMC:Lf complex coacervates were pH 5.0 and a 1:14 ratio. Isothermal titration calorimetry showed that the complexes were formed in two stages: first, the interaction was driven by electrostatic attraction, and second, electrostatic and other interactions (such as hydrogen bonding) or structural conformations were present. The capsules formed with CMC:Lf complex coacervates had a spherical appearance with a well-defined core and were able to encapsulate 97% of SIO. The presence of SIO, CMC, and Lf in the capsules was confirmed by Fourier transform infrared analysis. The <em>in vitro</em> gastrointestinal digestion of capsules showed that 84.31% of β-carotene present in SIO was released in the intestine, with high bioaccessibility (67%). Additionally, Fickian diffusion was the mechanism observed for β-carotene release in the food model. Thus, it is possible to conclude that CMC:Lf complex coacervates are good wall material for encapsulating and protecting β-carotene for food fortification.</p></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266702592100039X/pdfft?md5=21ec8a1d90eb7b401810e7d9999c886e&pid=1-s2.0-S266702592100039X-main.pdf","citationCount":"7","resultStr":"{\"title\":\"Encapsulation of sacha inchi oil in complex coacervates formed by carboxymethylcellulose and lactoferrin for controlled release of β-carotene\",\"authors\":\"Ahmad El Ghazzaqui Barbosa ,&nbsp;Augusto Bene Tomé Constantino ,&nbsp;Lívia Pinto Heckert Bastos ,&nbsp;Edwin Elard Garcia-Rojas\",\"doi\":\"10.1016/j.fhfh.2021.100047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This research studied the formation of complex coacervates formed by carboxymethylcellulose (CMC) and lactoferrin (Lf) as wall materials for encapsulation of β-carotene present in sacha inchi oil (SIO). According to zeta-potential and turbidimetric analyses, the optimum conditions for the formation of CMC:Lf complex coacervates were pH 5.0 and a 1:14 ratio. Isothermal titration calorimetry showed that the complexes were formed in two stages: first, the interaction was driven by electrostatic attraction, and second, electrostatic and other interactions (such as hydrogen bonding) or structural conformations were present. The capsules formed with CMC:Lf complex coacervates had a spherical appearance with a well-defined core and were able to encapsulate 97% of SIO. The presence of SIO, CMC, and Lf in the capsules was confirmed by Fourier transform infrared analysis. The <em>in vitro</em> gastrointestinal digestion of capsules showed that 84.31% of β-carotene present in SIO was released in the intestine, with high bioaccessibility (67%). Additionally, Fickian diffusion was the mechanism observed for β-carotene release in the food model. Thus, it is possible to conclude that CMC:Lf complex coacervates are good wall material for encapsulating and protecting β-carotene for food fortification.</p></div>\",\"PeriodicalId\":12385,\"journal\":{\"name\":\"Food Hydrocolloids for Health\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S266702592100039X/pdfft?md5=21ec8a1d90eb7b401810e7d9999c886e&pid=1-s2.0-S266702592100039X-main.pdf\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Hydrocolloids for Health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266702592100039X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Hydrocolloids for Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266702592100039X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 7

摘要

本研究以羧甲基纤维素(CMC)和乳铁蛋白(Lf)为壁材,对核桃油(sacha inchi oil, SIO)中β-胡萝卜素进行包封,形成复合凝聚体。经zeta电位和浊度分析,CMC:Lf络合物凝聚形成的最佳条件为pH 5.0和1:14比。等温滴定量热法表明,配合物的形成分两个阶段:第一阶段是静电吸引驱动相互作用,第二阶段是静电和其他相互作用(如氢键)或结构构象并存。CMC:Lf复合凝聚体形成的胶囊具有球形外观,核心明确,能够包封97%的SIO。傅里叶红外分析证实了胶囊中SIO、CMC和Lf的存在。体外胃肠消化实验表明,SIO中β-胡萝卜素的84.31%在肠内释放,具有较高的生物可及性(67%)。此外,在食物模型中观察到菲克扩散是β-胡萝卜素释放的机制。因此,CMC:Lf复合凝聚体是一种包封和保护β-胡萝卜素用于食品强化的良好壁材。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Encapsulation of sacha inchi oil in complex coacervates formed by carboxymethylcellulose and lactoferrin for controlled release of β-carotene

This research studied the formation of complex coacervates formed by carboxymethylcellulose (CMC) and lactoferrin (Lf) as wall materials for encapsulation of β-carotene present in sacha inchi oil (SIO). According to zeta-potential and turbidimetric analyses, the optimum conditions for the formation of CMC:Lf complex coacervates were pH 5.0 and a 1:14 ratio. Isothermal titration calorimetry showed that the complexes were formed in two stages: first, the interaction was driven by electrostatic attraction, and second, electrostatic and other interactions (such as hydrogen bonding) or structural conformations were present. The capsules formed with CMC:Lf complex coacervates had a spherical appearance with a well-defined core and were able to encapsulate 97% of SIO. The presence of SIO, CMC, and Lf in the capsules was confirmed by Fourier transform infrared analysis. The in vitro gastrointestinal digestion of capsules showed that 84.31% of β-carotene present in SIO was released in the intestine, with high bioaccessibility (67%). Additionally, Fickian diffusion was the mechanism observed for β-carotene release in the food model. Thus, it is possible to conclude that CMC:Lf complex coacervates are good wall material for encapsulating and protecting β-carotene for food fortification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
审稿时长
61 days
期刊最新文献
Green synthesis of silver nanoparticles from mulberry leaf through hot melt extrusion: Enhanced antioxidant, antibacterial, anti-inflammatory, antidiabetic, and anticancer properties Silkworm pupae protein-based film incorporated with Catharanthus roseus leaf extract-based nanoparticles enhanced the lipid stability and microbial quality of cheddar cheese Re-processing of pharmaceutical herb residues using isolated probiotics from plant sources and their beneficial effects on diarrhea Investigating next-generation edible packaging: Protein-based films and coatings for delivering active compounds Recent advances on antimicrobial peptide and polysaccharide hydrogels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1