{"title":"sierra/aria热响应代码中实现的Adventive条形元件的验证","authors":"Brantley Mills, Adam C. Hetzler, Oscar Deng","doi":"10.1115/1.4041837","DOIUrl":null,"url":null,"abstract":"A thorough code verification effort has been performed on a reduced order, finite element model for one-dimensional (1D) fluid flow convectively coupled with a three-dimensional (3D) solid, referred to as the “advective bar” model. The purpose of this effort was to provide confidence in the proper implementation of this model within the sierra/aria thermal response code at Sandia National Laboratories. The method of manufactured solutions (MMS) is applied so that the order of convergence in error norms for successively refined meshes and timesteps is investigated. Potential pitfalls that can lead to a premature evaluation of the model's implementation are described for this verification approach when applied to this unique model. Through observation of the expected order of convergence, these verification tests provide evidence of proper implementation of the model within the codebase.","PeriodicalId":52254,"journal":{"name":"Journal of Verification, Validation and Uncertainty Quantification","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1115/1.4041837","citationCount":"1","resultStr":"{\"title\":\"Verification of Advective Bar Elements Implemented in the sierra/aria Thermal Response Code\",\"authors\":\"Brantley Mills, Adam C. Hetzler, Oscar Deng\",\"doi\":\"10.1115/1.4041837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A thorough code verification effort has been performed on a reduced order, finite element model for one-dimensional (1D) fluid flow convectively coupled with a three-dimensional (3D) solid, referred to as the “advective bar” model. The purpose of this effort was to provide confidence in the proper implementation of this model within the sierra/aria thermal response code at Sandia National Laboratories. The method of manufactured solutions (MMS) is applied so that the order of convergence in error norms for successively refined meshes and timesteps is investigated. Potential pitfalls that can lead to a premature evaluation of the model's implementation are described for this verification approach when applied to this unique model. Through observation of the expected order of convergence, these verification tests provide evidence of proper implementation of the model within the codebase.\",\"PeriodicalId\":52254,\"journal\":{\"name\":\"Journal of Verification, Validation and Uncertainty Quantification\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1115/1.4041837\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Verification, Validation and Uncertainty Quantification\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4041837\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Verification, Validation and Uncertainty Quantification","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4041837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Verification of Advective Bar Elements Implemented in the sierra/aria Thermal Response Code
A thorough code verification effort has been performed on a reduced order, finite element model for one-dimensional (1D) fluid flow convectively coupled with a three-dimensional (3D) solid, referred to as the “advective bar” model. The purpose of this effort was to provide confidence in the proper implementation of this model within the sierra/aria thermal response code at Sandia National Laboratories. The method of manufactured solutions (MMS) is applied so that the order of convergence in error norms for successively refined meshes and timesteps is investigated. Potential pitfalls that can lead to a premature evaluation of the model's implementation are described for this verification approach when applied to this unique model. Through observation of the expected order of convergence, these verification tests provide evidence of proper implementation of the model within the codebase.