{"title":"模槽电火花加工,制造亲水性和耐磨表面","authors":"Monty Kumar, A. Sharma, Kailash Jha, A. Mandal","doi":"10.1080/02670844.2023.2245604","DOIUrl":null,"url":null,"abstract":"ABSTRACT The present work emphasizes the fabrication of a series of V-groove channels utilizing electrical discharge machining using a pointed tungsten tool electrode. The prepared textured surface is tested for the shape of V-groove channel, wetting behavior, and tribological aspect. A decrease in shape error of V-groove channel is observed as the peak current increases from 4 A to 10 A due to an increase in discharge energy which functions as the melting or vaporizing of machined materials. The water contact angle decreases from 61.3160 (untextured surface) to 49.5670 (sample 4) showing an increase in hydrophilic behavior for the samples having nearly a V-groove-shaped channel. Further, there is a decrease in COF value from 0.48 (untextured surface) to 0.23 (sample 4). The decreased COF value attributes to the formation of metallic bridges in the V-groove channel. The prime wear mechanism for an untextured surface is found to be ploughing whereas adhesion with ploughing is dominant for textured surfaces.","PeriodicalId":21995,"journal":{"name":"Surface Engineering","volume":"39 1","pages":"591 - 599"},"PeriodicalIF":2.4000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Die-sink EDM texturing to fabricate hydrophilic and wear resistant surface\",\"authors\":\"Monty Kumar, A. Sharma, Kailash Jha, A. Mandal\",\"doi\":\"10.1080/02670844.2023.2245604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The present work emphasizes the fabrication of a series of V-groove channels utilizing electrical discharge machining using a pointed tungsten tool electrode. The prepared textured surface is tested for the shape of V-groove channel, wetting behavior, and tribological aspect. A decrease in shape error of V-groove channel is observed as the peak current increases from 4 A to 10 A due to an increase in discharge energy which functions as the melting or vaporizing of machined materials. The water contact angle decreases from 61.3160 (untextured surface) to 49.5670 (sample 4) showing an increase in hydrophilic behavior for the samples having nearly a V-groove-shaped channel. Further, there is a decrease in COF value from 0.48 (untextured surface) to 0.23 (sample 4). The decreased COF value attributes to the formation of metallic bridges in the V-groove channel. The prime wear mechanism for an untextured surface is found to be ploughing whereas adhesion with ploughing is dominant for textured surfaces.\",\"PeriodicalId\":21995,\"journal\":{\"name\":\"Surface Engineering\",\"volume\":\"39 1\",\"pages\":\"591 - 599\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/02670844.2023.2245604\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/02670844.2023.2245604","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
Die-sink EDM texturing to fabricate hydrophilic and wear resistant surface
ABSTRACT The present work emphasizes the fabrication of a series of V-groove channels utilizing electrical discharge machining using a pointed tungsten tool electrode. The prepared textured surface is tested for the shape of V-groove channel, wetting behavior, and tribological aspect. A decrease in shape error of V-groove channel is observed as the peak current increases from 4 A to 10 A due to an increase in discharge energy which functions as the melting or vaporizing of machined materials. The water contact angle decreases from 61.3160 (untextured surface) to 49.5670 (sample 4) showing an increase in hydrophilic behavior for the samples having nearly a V-groove-shaped channel. Further, there is a decrease in COF value from 0.48 (untextured surface) to 0.23 (sample 4). The decreased COF value attributes to the formation of metallic bridges in the V-groove channel. The prime wear mechanism for an untextured surface is found to be ploughing whereas adhesion with ploughing is dominant for textured surfaces.
期刊介绍:
Surface Engineering provides a forum for the publication of refereed material on both the theory and practice of this important enabling technology, embracing science, technology and engineering. Coverage includes design, surface modification technologies and process control, and the characterisation and properties of the final system or component, including quality control and non-destructive examination.