房地产投资信托基金与股票指数的预测:数据处理的神经网络方法

IF 0.8 Q3 Economics, Econometrics and Finance Pacific Rim Property Research Journal Pub Date : 2017-05-04 DOI:10.1080/14445921.2016.1225149
R. Li, S. Fong, Kyle Weng Sang Chong
{"title":"房地产投资信托基金与股票指数的预测:数据处理的神经网络方法","authors":"R. Li, S. Fong, Kyle Weng Sang Chong","doi":"10.1080/14445921.2016.1225149","DOIUrl":null,"url":null,"abstract":"Abstract If there is long-term memory in property stocks and REITs prices, historical data is relevant for future prices prediction. Despite previous research adopted various different methods to forecast future asset prices by using historical data; we attempted to forecast the REITs and stock indices by Group Method of Data Handling (GMDH) neural network method with Hurst which is the first of its kind. Our results showed that GMDH neural network performed better than the classical forecasting algorithms such as Single Exponential Smooth, Double Exponential Smooth, ARIMA and back-propagation neural network. The research results also provide useful information for investors when they make investment decisions.","PeriodicalId":44302,"journal":{"name":"Pacific Rim Property Research Journal","volume":"23 1","pages":"123 - 160"},"PeriodicalIF":0.8000,"publicationDate":"2017-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/14445921.2016.1225149","citationCount":"47","resultStr":"{\"title\":\"Forecasting the REITs and stock indices: Group Method of Data Handling Neural Network approach\",\"authors\":\"R. Li, S. Fong, Kyle Weng Sang Chong\",\"doi\":\"10.1080/14445921.2016.1225149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract If there is long-term memory in property stocks and REITs prices, historical data is relevant for future prices prediction. Despite previous research adopted various different methods to forecast future asset prices by using historical data; we attempted to forecast the REITs and stock indices by Group Method of Data Handling (GMDH) neural network method with Hurst which is the first of its kind. Our results showed that GMDH neural network performed better than the classical forecasting algorithms such as Single Exponential Smooth, Double Exponential Smooth, ARIMA and back-propagation neural network. The research results also provide useful information for investors when they make investment decisions.\",\"PeriodicalId\":44302,\"journal\":{\"name\":\"Pacific Rim Property Research Journal\",\"volume\":\"23 1\",\"pages\":\"123 - 160\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2017-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/14445921.2016.1225149\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pacific Rim Property Research Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/14445921.2016.1225149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Economics, Econometrics and Finance\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Rim Property Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/14445921.2016.1225149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 47

摘要

摘要如果房地产股票和REITs价格存在长期记忆,那么历史数据与未来价格预测相关。尽管之前的研究采用了各种不同的方法来利用历史数据预测未来资产价格;我们尝试用数据处理的群方法(GMDH)神经网络方法对REITs和股指进行预测,Hurst是这类方法中的第一个。结果表明,GMDH神经网络的预测性能优于单指数平滑、双指数平滑、ARIMA和反向传播神经网络等经典预测算法。研究结果也为投资者做出投资决策提供了有用的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Forecasting the REITs and stock indices: Group Method of Data Handling Neural Network approach
Abstract If there is long-term memory in property stocks and REITs prices, historical data is relevant for future prices prediction. Despite previous research adopted various different methods to forecast future asset prices by using historical data; we attempted to forecast the REITs and stock indices by Group Method of Data Handling (GMDH) neural network method with Hurst which is the first of its kind. Our results showed that GMDH neural network performed better than the classical forecasting algorithms such as Single Exponential Smooth, Double Exponential Smooth, ARIMA and back-propagation neural network. The research results also provide useful information for investors when they make investment decisions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
6
期刊最新文献
A contrariant observation on assumed rising property values and value capture Feng Shui and superstition in Hong Kong’s residential housing market Housing construction materials and house rent trends in Ede, Nigeria On the American perception of real estate as business: revisiting the ontological project of Julian Diaz III Supply and demand approaches to the urban residential property prices determination; transactions evidence from Nigeria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1