U. Buchenau , G. D’Angelo , G. Carini , X. Liu , M.A. Ramos
{"title":"玻璃的吸声性","authors":"U. Buchenau , G. D’Angelo , G. Carini , X. Liu , M.A. Ramos","doi":"10.1016/j.revip.2022.100078","DOIUrl":null,"url":null,"abstract":"<div><p>The paper presents a description of the sound wave absorption in glasses, from the lowest temperatures up to the glass transition, in terms of three compatible phenomenological models. Resonant tunneling, the rise of the relaxational tunneling to the tunneling plateau and the crossover to classical relaxation are universal features of glasses and are well described by the tunneling model and its extension to include soft vibrations and low barrier relaxations, the soft potential model. Its further extension to non-universal features at higher temperatures is the very flexible Gilroy–Phillips model, which allows to determine the barrier density of the energy landscape of the specific glass from the frequency and temperature dependence of the sound wave absorption in the classical relaxation domain. To apply it properly at elevated temperatures, one needs its formulation in terms of the shear compliance. As one approaches the glass transition, universality sets in again with an exponential rise of the barrier density reflecting the frozen fast Kohlrausch <span><math><msup><mrow><mi>t</mi></mrow><mrow><mi>β</mi></mrow></msup></math></span>-tail (in time <span><math><mi>t</mi></math></span>, with <span><math><mi>β</mi></math></span> close to 1/2) of the viscous flow at the glass temperature. The validity of the scheme is checked for literature data of several glasses and polymers with and without secondary relaxation peaks. The frozen Kohlrausch tail of the mechanical relaxation shows no indication of the strongly temperature-dependent barrier density observed in dielectric data of molecular glasses with hydrogen bonds. Instead, the mechanical relaxation data indicate an energy landscape describable with a frozen temperature-independent barrier density for any glass.</p></div>","PeriodicalId":37875,"journal":{"name":"Reviews in Physics","volume":"9 ","pages":"Article 100078"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405428322000090/pdfft?md5=1ee65c744a86f6f48f07dfa9c7f955f2&pid=1-s2.0-S2405428322000090-main.pdf","citationCount":"3","resultStr":"{\"title\":\"Sound absorption in glasses\",\"authors\":\"U. Buchenau , G. D’Angelo , G. Carini , X. Liu , M.A. Ramos\",\"doi\":\"10.1016/j.revip.2022.100078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The paper presents a description of the sound wave absorption in glasses, from the lowest temperatures up to the glass transition, in terms of three compatible phenomenological models. Resonant tunneling, the rise of the relaxational tunneling to the tunneling plateau and the crossover to classical relaxation are universal features of glasses and are well described by the tunneling model and its extension to include soft vibrations and low barrier relaxations, the soft potential model. Its further extension to non-universal features at higher temperatures is the very flexible Gilroy–Phillips model, which allows to determine the barrier density of the energy landscape of the specific glass from the frequency and temperature dependence of the sound wave absorption in the classical relaxation domain. To apply it properly at elevated temperatures, one needs its formulation in terms of the shear compliance. As one approaches the glass transition, universality sets in again with an exponential rise of the barrier density reflecting the frozen fast Kohlrausch <span><math><msup><mrow><mi>t</mi></mrow><mrow><mi>β</mi></mrow></msup></math></span>-tail (in time <span><math><mi>t</mi></math></span>, with <span><math><mi>β</mi></math></span> close to 1/2) of the viscous flow at the glass temperature. The validity of the scheme is checked for literature data of several glasses and polymers with and without secondary relaxation peaks. The frozen Kohlrausch tail of the mechanical relaxation shows no indication of the strongly temperature-dependent barrier density observed in dielectric data of molecular glasses with hydrogen bonds. Instead, the mechanical relaxation data indicate an energy landscape describable with a frozen temperature-independent barrier density for any glass.</p></div>\",\"PeriodicalId\":37875,\"journal\":{\"name\":\"Reviews in Physics\",\"volume\":\"9 \",\"pages\":\"Article 100078\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405428322000090/pdfft?md5=1ee65c744a86f6f48f07dfa9c7f955f2&pid=1-s2.0-S2405428322000090-main.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405428322000090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Physics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405428322000090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
The paper presents a description of the sound wave absorption in glasses, from the lowest temperatures up to the glass transition, in terms of three compatible phenomenological models. Resonant tunneling, the rise of the relaxational tunneling to the tunneling plateau and the crossover to classical relaxation are universal features of glasses and are well described by the tunneling model and its extension to include soft vibrations and low barrier relaxations, the soft potential model. Its further extension to non-universal features at higher temperatures is the very flexible Gilroy–Phillips model, which allows to determine the barrier density of the energy landscape of the specific glass from the frequency and temperature dependence of the sound wave absorption in the classical relaxation domain. To apply it properly at elevated temperatures, one needs its formulation in terms of the shear compliance. As one approaches the glass transition, universality sets in again with an exponential rise of the barrier density reflecting the frozen fast Kohlrausch -tail (in time , with close to 1/2) of the viscous flow at the glass temperature. The validity of the scheme is checked for literature data of several glasses and polymers with and without secondary relaxation peaks. The frozen Kohlrausch tail of the mechanical relaxation shows no indication of the strongly temperature-dependent barrier density observed in dielectric data of molecular glasses with hydrogen bonds. Instead, the mechanical relaxation data indicate an energy landscape describable with a frozen temperature-independent barrier density for any glass.
期刊介绍:
Reviews in Physics is a gold open access Journal, publishing review papers on topics in all areas of (applied) physics. The journal provides a platform for researchers who wish to summarize a field of physics research and share this work as widely as possible. The published papers provide an overview of the main developments on a particular topic, with an emphasis on recent developments, and sketch an outlook on future developments. The journal focuses on short review papers (max 15 pages) and these are freely available after publication. All submitted manuscripts are fully peer-reviewed and after acceptance a publication fee is charged to cover all editorial, production, and archiving costs.