一类非线性随机系统的最优类卡尔曼滤波器

IF 13 1区 工程技术 Q1 ENGINEERING, MARINE Journal of Ocean Engineering and Science Pub Date : 2023-10-01 DOI:10.1016/j.joes.2022.03.002
Shulan Kong , Yawen Sun , Huanshui Zhang
{"title":"一类非线性随机系统的最优类卡尔曼滤波器","authors":"Shulan Kong ,&nbsp;Yawen Sun ,&nbsp;Huanshui Zhang","doi":"10.1016/j.joes.2022.03.002","DOIUrl":null,"url":null,"abstract":"<div><p>This paper deals with an optimal Kalman-like filter for nonlinear discrete-time systems aided with auto and cross-correlated noises and stochastic parameter matrices involved in state and measurement equations, and random nonlinearity. The random variables are proposed by their statistical characteristics while the inquiry is focused on stochastic multivariate analysis and calculation. For the nonlinear system with the auto and cross-correlated noises and stochastic parameter matrices, an equivalent system is first reconstructed by decomposing stochastic parameter matrices and introducing uncorrelated pseudo-noises. Then a recursive filter that ensures unbiasedness and minimizes the error variance is designed for the newly transformed equivalent system. Finally, the filter is verified by applying it to some numerical simulations.</p></div>","PeriodicalId":48514,"journal":{"name":"Journal of Ocean Engineering and Science","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimal Kalman-like filter for a class of nonlinear stochastic systems\",\"authors\":\"Shulan Kong ,&nbsp;Yawen Sun ,&nbsp;Huanshui Zhang\",\"doi\":\"10.1016/j.joes.2022.03.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper deals with an optimal Kalman-like filter for nonlinear discrete-time systems aided with auto and cross-correlated noises and stochastic parameter matrices involved in state and measurement equations, and random nonlinearity. The random variables are proposed by their statistical characteristics while the inquiry is focused on stochastic multivariate analysis and calculation. For the nonlinear system with the auto and cross-correlated noises and stochastic parameter matrices, an equivalent system is first reconstructed by decomposing stochastic parameter matrices and introducing uncorrelated pseudo-noises. Then a recursive filter that ensures unbiasedness and minimizes the error variance is designed for the newly transformed equivalent system. Finally, the filter is verified by applying it to some numerical simulations.</p></div>\",\"PeriodicalId\":48514,\"journal\":{\"name\":\"Journal of Ocean Engineering and Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ocean Engineering and Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468013322000511\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ocean Engineering and Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468013322000511","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了在状态方程和测量方程中涉及的自相关和互相关噪声、随机参数矩阵以及随机非线性的辅助下,非线性离散时间系统的最优类卡尔曼滤波器。随机变量是根据其统计特性提出的,而研究的重点是随机多变量分析和计算。对于具有自相关和互相关噪声以及随机参数矩阵的非线性系统,首先通过分解随机参数矩阵并引入不相关的伪噪声来重构等效系统。然后,为新变换的等价系统设计了一个递归滤波器,该滤波器确保了无偏性并使误差方差最小化。最后,通过数值模拟验证了该滤波器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal Kalman-like filter for a class of nonlinear stochastic systems

This paper deals with an optimal Kalman-like filter for nonlinear discrete-time systems aided with auto and cross-correlated noises and stochastic parameter matrices involved in state and measurement equations, and random nonlinearity. The random variables are proposed by their statistical characteristics while the inquiry is focused on stochastic multivariate analysis and calculation. For the nonlinear system with the auto and cross-correlated noises and stochastic parameter matrices, an equivalent system is first reconstructed by decomposing stochastic parameter matrices and introducing uncorrelated pseudo-noises. Then a recursive filter that ensures unbiasedness and minimizes the error variance is designed for the newly transformed equivalent system. Finally, the filter is verified by applying it to some numerical simulations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.50
自引率
19.70%
发文量
224
审稿时长
29 days
期刊介绍: The Journal of Ocean Engineering and Science (JOES) serves as a platform for disseminating original research and advancements in the realm of ocean engineering and science. JOES encourages the submission of papers covering various aspects of ocean engineering and science.
期刊最新文献
Editorial Board Editorial Board On thermoelastic problem based on four theories with the efficiency of the magnetic field and gravity New-fashioned solitons of coupled nonlinear Maccari systems describing the motion of solitary waves in fluid flow Analytical study of atmospheric internal waves model with fractional approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1