印度新冠肺炎病例预测:一项预测研究

P. Sharma, Tanu Sharma, K. Veer
{"title":"印度新冠肺炎病例预测:一项预测研究","authors":"P. Sharma, Tanu Sharma, K. Veer","doi":"10.2174/1573395516999201112092152","DOIUrl":null,"url":null,"abstract":"\n\nAn outbreak of new coronavirus (COVID-19) originated by SARS-CoV has reached\n212 countries throughout the world. India is the second-highest populated country, so it is critical\nto forecasting the confirmed cases and deaths due to pandemic. To fulfil the purpose, three machine\nlearning models Linear Regression, Multilayer Perceptron, and Sequential Minimal Optimization\nRegression are used. The predictive data of three geographic regions (India, Maharashtra, and\nTamil Nadu) are compared with the data considered to be adequate in practice. The analysis concluded\nthat Sequential Minimal Optimization Regression can be adopted for possible pandemic predictions\nsuch as COVID-19.\n","PeriodicalId":35403,"journal":{"name":"Current Immunology Reviews","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forecasting of COVID-19 Cases in India: A Predictive Study\",\"authors\":\"P. Sharma, Tanu Sharma, K. Veer\",\"doi\":\"10.2174/1573395516999201112092152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nAn outbreak of new coronavirus (COVID-19) originated by SARS-CoV has reached\\n212 countries throughout the world. India is the second-highest populated country, so it is critical\\nto forecasting the confirmed cases and deaths due to pandemic. To fulfil the purpose, three machine\\nlearning models Linear Regression, Multilayer Perceptron, and Sequential Minimal Optimization\\nRegression are used. The predictive data of three geographic regions (India, Maharashtra, and\\nTamil Nadu) are compared with the data considered to be adequate in practice. The analysis concluded\\nthat Sequential Minimal Optimization Regression can be adopted for possible pandemic predictions\\nsuch as COVID-19.\\n\",\"PeriodicalId\":35403,\"journal\":{\"name\":\"Current Immunology Reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Immunology Reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1573395516999201112092152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Immunology Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1573395516999201112092152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

由SARS-CoV引起的新型冠状病毒(新冠肺炎)疫情已波及全球212个国家。印度是人口第二高的国家,因此预测疫情导致的确诊病例和死亡至关重要。为了实现这一目的,使用了三个机器学习模型线性回归、多层感知器和序列最小优化回归。将三个地理区域(印度、马哈拉施特拉邦和泰米尔纳德邦)的预测数据与实践中认为足够的数据进行了比较。分析得出结论,序列最小优化回归可用于新冠肺炎等可能的大流行预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Forecasting of COVID-19 Cases in India: A Predictive Study
An outbreak of new coronavirus (COVID-19) originated by SARS-CoV has reached 212 countries throughout the world. India is the second-highest populated country, so it is critical to forecasting the confirmed cases and deaths due to pandemic. To fulfil the purpose, three machine learning models Linear Regression, Multilayer Perceptron, and Sequential Minimal Optimization Regression are used. The predictive data of three geographic regions (India, Maharashtra, and Tamil Nadu) are compared with the data considered to be adequate in practice. The analysis concluded that Sequential Minimal Optimization Regression can be adopted for possible pandemic predictions such as COVID-19.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Immunology Reviews
Current Immunology Reviews Medicine-Immunology and Allergy
自引率
0.00%
发文量
0
期刊介绍: Current Immunology Reviews publishes frontier reviews on all the latest advances in clinical immunology. The journal"s aim is to publish the highest quality review articles dedicated to clinical research in the field. The journal is essential reading for all researchers and clinicians in clinical immunology.
期刊最新文献
Forecasting of COVID-19 Cases in India: A Predictive Study Can Mandated BCG Vaccine Promote herd Immunity against Novel Coronavirus? A Potential Solution at Hand to Tackle Covid-19 Pandemic Interleukin-10 in Oral Lichen Planus – Review and Meta-Analysis Thymosin α1; Potential Therapeutic Implications of an Immunoregulatory Drug in the Treatment of Lymphocytopenia Associated with COVID-19 COVID-19: Update on Pathogenesis and Treatment Strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1