基于模糊参数模型的电动汽车锂离子电池充电状态估计的增强EKF和SVSF

IF 1.9 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IET Electrical Systems in Transportation Pub Date : 2022-10-26 DOI:10.1049/els2.12056
Meriem Ben Lazreg, Sabeur Jemmali, Bilal Manai, Mahmoud Hamouda
{"title":"基于模糊参数模型的电动汽车锂离子电池充电状态估计的增强EKF和SVSF","authors":"Meriem Ben Lazreg,&nbsp;Sabeur Jemmali,&nbsp;Bilal Manai,&nbsp;Mahmoud Hamouda","doi":"10.1049/els2.12056","DOIUrl":null,"url":null,"abstract":"<p>The precision of equivalent circuit model (ECM)-based state of charge (SoC) estimation methods is vulnerable to the variation of the battery parameters, due to several internal and external factors. In this regard, this study proposes a fuzzy logic method for the approximate estimation of the ECM parameters at different temperatures and SoC levels. The fuzzy inference system is designed to handle the non-linear deviation of the battery parameters from their reference values. On this basis, the extended Kalman filter and smooth variable structure filter are used to estimate the SoC. The two algorithms with fuzzy parameters (FP), namely FP-EKF and FP-SVSF, are tested on a 20 Ah Nickel Manganese Cobalt cell with maximum voltage of 4.2 V. The results show that the maximum root mean square error (RMSE) of the estimated SoC is kept within 1.51% with the FP-EKF and 0.68% with the FP-SVSF. Moreover, the reduction of the maximum absolute error may reach 0.34% with the FP-EKF, and 0.82% with the FP-SVSF, compared to the same algorithms without the proposed FP method. The executable codes are implemented on a low-cost controller, and the average computational time is obtained as 215 μs, which confirms the real-time practicality of the proposed method.</p>","PeriodicalId":48518,"journal":{"name":"IET Electrical Systems in Transportation","volume":"12 4","pages":"315-329"},"PeriodicalIF":1.9000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/els2.12056","citationCount":"1","resultStr":"{\"title\":\"Enhanced EKF and SVSF for state of charge estimation of Li-ion battery in electric vehicle using a fuzzy parameters model\",\"authors\":\"Meriem Ben Lazreg,&nbsp;Sabeur Jemmali,&nbsp;Bilal Manai,&nbsp;Mahmoud Hamouda\",\"doi\":\"10.1049/els2.12056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The precision of equivalent circuit model (ECM)-based state of charge (SoC) estimation methods is vulnerable to the variation of the battery parameters, due to several internal and external factors. In this regard, this study proposes a fuzzy logic method for the approximate estimation of the ECM parameters at different temperatures and SoC levels. The fuzzy inference system is designed to handle the non-linear deviation of the battery parameters from their reference values. On this basis, the extended Kalman filter and smooth variable structure filter are used to estimate the SoC. The two algorithms with fuzzy parameters (FP), namely FP-EKF and FP-SVSF, are tested on a 20 Ah Nickel Manganese Cobalt cell with maximum voltage of 4.2 V. The results show that the maximum root mean square error (RMSE) of the estimated SoC is kept within 1.51% with the FP-EKF and 0.68% with the FP-SVSF. Moreover, the reduction of the maximum absolute error may reach 0.34% with the FP-EKF, and 0.82% with the FP-SVSF, compared to the same algorithms without the proposed FP method. The executable codes are implemented on a low-cost controller, and the average computational time is obtained as 215 μs, which confirms the real-time practicality of the proposed method.</p>\",\"PeriodicalId\":48518,\"journal\":{\"name\":\"IET Electrical Systems in Transportation\",\"volume\":\"12 4\",\"pages\":\"315-329\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/els2.12056\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Electrical Systems in Transportation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/els2.12056\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Electrical Systems in Transportation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/els2.12056","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

摘要

基于等效电路模型(ECM)的电池荷电状态(SoC)估计方法的精度容易受到电池参数变化的影响,这主要受多种内外部因素的影响。为此,本研究提出了一种模糊逻辑方法来近似估计不同温度和SoC水平下的ECM参数。针对电池参数与参考值的非线性偏差,设计了模糊推理系统。在此基础上,采用扩展卡尔曼滤波和光滑变结构滤波对SoC进行估计。在最大电压为4.2 V的20 Ah镍锰钴电池上对两种模糊参数(FP)算法FP- ekf和FP- svsf进行了测试。结果表明,FP-EKF和FP-SVSF的最大均方根误差(RMSE)分别控制在1.51%和0.68%以内。与未采用FP方法的相同算法相比,FP- ekf的最大绝对误差降低了0.34%,FP- svsf的最大绝对误差降低了0.82%。可执行代码在低成本控制器上实现,平均计算时间为215 μs,验证了所提方法的实时性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced EKF and SVSF for state of charge estimation of Li-ion battery in electric vehicle using a fuzzy parameters model

The precision of equivalent circuit model (ECM)-based state of charge (SoC) estimation methods is vulnerable to the variation of the battery parameters, due to several internal and external factors. In this regard, this study proposes a fuzzy logic method for the approximate estimation of the ECM parameters at different temperatures and SoC levels. The fuzzy inference system is designed to handle the non-linear deviation of the battery parameters from their reference values. On this basis, the extended Kalman filter and smooth variable structure filter are used to estimate the SoC. The two algorithms with fuzzy parameters (FP), namely FP-EKF and FP-SVSF, are tested on a 20 Ah Nickel Manganese Cobalt cell with maximum voltage of 4.2 V. The results show that the maximum root mean square error (RMSE) of the estimated SoC is kept within 1.51% with the FP-EKF and 0.68% with the FP-SVSF. Moreover, the reduction of the maximum absolute error may reach 0.34% with the FP-EKF, and 0.82% with the FP-SVSF, compared to the same algorithms without the proposed FP method. The executable codes are implemented on a low-cost controller, and the average computational time is obtained as 215 μs, which confirms the real-time practicality of the proposed method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
4.30%
发文量
18
审稿时长
29 weeks
期刊最新文献
Multiresolution Models of DC Traction Power Supply Systems With Reversible Substations A Preliminary Study on 2D Convolutional Neural Network-Based Discontinuous Rail Position Classification for Detection on Rail Breaks Using Distributed Acoustic Sensing Data Research on Electromagnetic Impact of High-Power Direct Drive Permanent Magnet Synchronous Motor on Track Circuit E-Gear Functionality Based on Mechanical Relays in Permanent Magnet Synchronous Machines Dynamic Distribution of Rail Potential with Regional Insulation Alteration in Multi-Train Urban Rail Transit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1