上下文文本编码:大规模文本数据的混合方法

IF 6.5 2区 社会学 Q1 SOCIAL SCIENCES, MATHEMATICAL METHODS Sociological Methods & Research Pub Date : 2021-02-08 DOI:10.1177/0049124120986191
Matty Lichtenstein, Zawadi Rucks-Ahidiana
{"title":"上下文文本编码:大规模文本数据的混合方法","authors":"Matty Lichtenstein, Zawadi Rucks-Ahidiana","doi":"10.1177/0049124120986191","DOIUrl":null,"url":null,"abstract":"With the growing availability of large-scale text-based data sets, there is an increasing need for an accessible and systematic way to analyze qualitative texts. This article introduces and details the contextual text coding (CTC) method as a mixed-methods approach to large-scale qualitative data analysis. The method is particularly useful for complex text, textual data characterized by context-specific meanings and a lack of consistent terminology. CTC provides an alternative to current approaches to analyzing large textual data sets, specifically computational text analysis and hand coding, neither of which capture both the qualitative and quantitative analytical potential of large-scale textual data sets. Building on hand coding techniques and systematic sampling methods, CTC provides a clear six-step process to produce both quantitative and qualitative analyses of large-scale complex textual data sources. This article includes two examples, using projects focusing on journal and interview data, respectively, to illustrate the method’s versatility.","PeriodicalId":21849,"journal":{"name":"Sociological Methods & Research","volume":"52 1","pages":"606 - 641"},"PeriodicalIF":6.5000,"publicationDate":"2021-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0049124120986191","citationCount":"3","resultStr":"{\"title\":\"Contextual Text Coding: A Mixed-methods Approach for Large-scale Textual Data\",\"authors\":\"Matty Lichtenstein, Zawadi Rucks-Ahidiana\",\"doi\":\"10.1177/0049124120986191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the growing availability of large-scale text-based data sets, there is an increasing need for an accessible and systematic way to analyze qualitative texts. This article introduces and details the contextual text coding (CTC) method as a mixed-methods approach to large-scale qualitative data analysis. The method is particularly useful for complex text, textual data characterized by context-specific meanings and a lack of consistent terminology. CTC provides an alternative to current approaches to analyzing large textual data sets, specifically computational text analysis and hand coding, neither of which capture both the qualitative and quantitative analytical potential of large-scale textual data sets. Building on hand coding techniques and systematic sampling methods, CTC provides a clear six-step process to produce both quantitative and qualitative analyses of large-scale complex textual data sources. This article includes two examples, using projects focusing on journal and interview data, respectively, to illustrate the method’s versatility.\",\"PeriodicalId\":21849,\"journal\":{\"name\":\"Sociological Methods & Research\",\"volume\":\"52 1\",\"pages\":\"606 - 641\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2021-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/0049124120986191\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sociological Methods & Research\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1177/0049124120986191\",\"RegionNum\":2,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIAL SCIENCES, MATHEMATICAL METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sociological Methods & Research","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1177/0049124120986191","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 3

摘要

随着大规模基于文本的数据集的日益可用性,越来越需要一种可访问和系统的方法来分析定性文本。本文介绍并详细介绍了上下文文本编码(CTC)方法作为一种混合方法来进行大规模定性数据分析。该方法特别适用于复杂文本、以上下文特定含义为特征的文本数据和缺乏一致的术语。CTC提供了一种替代当前分析大型文本数据集的方法,特别是计算文本分析和手工编码,这两种方法都不能同时捕获大规模文本数据集的定性和定量分析潜力。CTC建立在手工编码技术和系统采样方法的基础上,提供了一个清晰的六步过程,可以对大规模复杂文本数据源进行定量和定性分析。本文包括两个例子,分别使用专注于期刊和访谈数据的项目来说明该方法的多功能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Contextual Text Coding: A Mixed-methods Approach for Large-scale Textual Data
With the growing availability of large-scale text-based data sets, there is an increasing need for an accessible and systematic way to analyze qualitative texts. This article introduces and details the contextual text coding (CTC) method as a mixed-methods approach to large-scale qualitative data analysis. The method is particularly useful for complex text, textual data characterized by context-specific meanings and a lack of consistent terminology. CTC provides an alternative to current approaches to analyzing large textual data sets, specifically computational text analysis and hand coding, neither of which capture both the qualitative and quantitative analytical potential of large-scale textual data sets. Building on hand coding techniques and systematic sampling methods, CTC provides a clear six-step process to produce both quantitative and qualitative analyses of large-scale complex textual data sources. This article includes two examples, using projects focusing on journal and interview data, respectively, to illustrate the method’s versatility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.30
自引率
3.20%
发文量
40
期刊介绍: Sociological Methods & Research is a quarterly journal devoted to sociology as a cumulative empirical science. The objectives of SMR are multiple, but emphasis is placed on articles that advance the understanding of the field through systematic presentations that clarify methodological problems and assist in ordering the known facts in an area. Review articles will be published, particularly those that emphasize a critical analysis of the status of the arts, but original presentations that are broadly based and provide new research will also be published. Intrinsically, SMR is viewed as substantive journal but one that is highly focused on the assessment of the scientific status of sociology. The scope is broad and flexible, and authors are invited to correspond with the editors about the appropriateness of their articles.
期刊最新文献
Sharing Big Video Data: Ethics, Methods, and Technology Dynamics of Health Expectancy: An Introduction to the Multiple Multistate Method (MMM) Seeded Topic Models in Digital Archives: Analyzing Interpretations of Immigration in Swedish Newspapers, 1945–2019 A Primer on Deep Learning for Causal Inference Untapped Potential: Designed Digital Trace Data in Online Survey Experiments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1