利用CO储层实现CO电还原制醇的高碳效率

IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Joule Pub Date : 2023-10-18 DOI:10.1016/j.joule.2023.08.001
Sungjin Park , Ivan Grigioni , Tartela Alkayyali , Byoung-Hoon Lee , Jiheon Kim , Erfan Shirzadi , Roham Dorakhan , Geonhui Lee , Jehad Abed , Filippo Bossola , Eui Dae Jung , Yongxiang Liang , Mi Gyoung Lee , Ali Shayesteh Zeraati , Dongha Kim , David Sinton , Edward Sargent
{"title":"利用CO储层实现CO电还原制醇的高碳效率","authors":"Sungjin Park ,&nbsp;Ivan Grigioni ,&nbsp;Tartela Alkayyali ,&nbsp;Byoung-Hoon Lee ,&nbsp;Jiheon Kim ,&nbsp;Erfan Shirzadi ,&nbsp;Roham Dorakhan ,&nbsp;Geonhui Lee ,&nbsp;Jehad Abed ,&nbsp;Filippo Bossola ,&nbsp;Eui Dae Jung ,&nbsp;Yongxiang Liang ,&nbsp;Mi Gyoung Lee ,&nbsp;Ali Shayesteh Zeraati ,&nbsp;Dongha Kim ,&nbsp;David Sinton ,&nbsp;Edward Sargent","doi":"10.1016/j.joule.2023.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>The electrochemical CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) has progressed but suffers an energy penalty from CO<sub>2</sub> loss due to carbonate formation and crossover. Cascade CO<sub>2</sub><span> to CO conversion followed by CO reduction addresses this issue, but the combined figures of carbon efficiency (CE), energy efficiency (EE), selectivity, and stability require improvement. We posited that increased CO availability near active catalytic sites could maintain selectivity even under CO-depleted conditions. Here, we present a heterojunction<span> carbon reservoir catalyst (CRC) architecture that combines copper nanoparticles with porous carbon nanoparticles. The pyridinic and pyrrolic functionalities of CRC can absorb CO enabling high CE under CO-depleted conditions. With CRC catalyst, we achieve ethanol FE and CE of 50% and 93% (CE∗Faradaic efficiency [FE] = 47%) in flow cell at 200 mA cm</span></span><sup>−2</sup><span>, fully doubling the best prior CE∗FE to ethanol. In membrane electrode assembly (MEA) system, we show sustained efficiency over 85 h at 100 mA cm</span><sup>−2</sup>.</p></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"7 10","pages":"Pages 2335-2348"},"PeriodicalIF":38.6000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High carbon efficiency in CO-to-alcohol electroreduction using a CO reservoir\",\"authors\":\"Sungjin Park ,&nbsp;Ivan Grigioni ,&nbsp;Tartela Alkayyali ,&nbsp;Byoung-Hoon Lee ,&nbsp;Jiheon Kim ,&nbsp;Erfan Shirzadi ,&nbsp;Roham Dorakhan ,&nbsp;Geonhui Lee ,&nbsp;Jehad Abed ,&nbsp;Filippo Bossola ,&nbsp;Eui Dae Jung ,&nbsp;Yongxiang Liang ,&nbsp;Mi Gyoung Lee ,&nbsp;Ali Shayesteh Zeraati ,&nbsp;Dongha Kim ,&nbsp;David Sinton ,&nbsp;Edward Sargent\",\"doi\":\"10.1016/j.joule.2023.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The electrochemical CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) has progressed but suffers an energy penalty from CO<sub>2</sub> loss due to carbonate formation and crossover. Cascade CO<sub>2</sub><span> to CO conversion followed by CO reduction addresses this issue, but the combined figures of carbon efficiency (CE), energy efficiency (EE), selectivity, and stability require improvement. We posited that increased CO availability near active catalytic sites could maintain selectivity even under CO-depleted conditions. Here, we present a heterojunction<span> carbon reservoir catalyst (CRC) architecture that combines copper nanoparticles with porous carbon nanoparticles. The pyridinic and pyrrolic functionalities of CRC can absorb CO enabling high CE under CO-depleted conditions. With CRC catalyst, we achieve ethanol FE and CE of 50% and 93% (CE∗Faradaic efficiency [FE] = 47%) in flow cell at 200 mA cm</span></span><sup>−2</sup><span>, fully doubling the best prior CE∗FE to ethanol. In membrane electrode assembly (MEA) system, we show sustained efficiency over 85 h at 100 mA cm</span><sup>−2</sup>.</p></div>\",\"PeriodicalId\":343,\"journal\":{\"name\":\"Joule\",\"volume\":\"7 10\",\"pages\":\"Pages 2335-2348\"},\"PeriodicalIF\":38.6000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Joule\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542435123003215\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542435123003215","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

电化学CO2还原反应(CO2RR)已经进行,但由于碳酸盐的形成和交叉而遭受CO2损失的能量损失。级联CO2转化为CO,然后进行CO还原,解决了这个问题,但碳效率(CE)、能源效率(EE)、选择性和稳定性的综合数据需要改进。我们假设,即使在CO耗尽的条件下,活性催化位点附近增加的CO可用性也可以保持选择性。在这里,我们提出了一种异质结碳储层催化剂(CRC)结构,该结构将铜纳米颗粒与多孔碳纳米颗粒相结合。CRC的吡啶和吡咯官能团可以吸收CO,从而在CO耗尽的条件下实现高CE。使用CRC催化剂,我们在200 mA cm−2的流动池中实现了50%和93%的乙醇FE和CE(CE*法拉第效率[FE]=47%),使乙醇的最佳先前CE*FE完全翻倍。在膜电极组件(MEA)系统中,我们在100 mA cm−2下显示出超过85小时的持续效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High carbon efficiency in CO-to-alcohol electroreduction using a CO reservoir

The electrochemical CO2 reduction reaction (CO2RR) has progressed but suffers an energy penalty from CO2 loss due to carbonate formation and crossover. Cascade CO2 to CO conversion followed by CO reduction addresses this issue, but the combined figures of carbon efficiency (CE), energy efficiency (EE), selectivity, and stability require improvement. We posited that increased CO availability near active catalytic sites could maintain selectivity even under CO-depleted conditions. Here, we present a heterojunction carbon reservoir catalyst (CRC) architecture that combines copper nanoparticles with porous carbon nanoparticles. The pyridinic and pyrrolic functionalities of CRC can absorb CO enabling high CE under CO-depleted conditions. With CRC catalyst, we achieve ethanol FE and CE of 50% and 93% (CE∗Faradaic efficiency [FE] = 47%) in flow cell at 200 mA cm−2, fully doubling the best prior CE∗FE to ethanol. In membrane electrode assembly (MEA) system, we show sustained efficiency over 85 h at 100 mA cm−2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
期刊最新文献
Spin regulation through chirality in catalysis Battery health management in the era of big field data Anthracene-based energy storage Technoeconomic analysis of perovskite/silicon tandem solar modules Strained heterojunction enables high-performance, fully textured perovskite/silicon tandem solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1