磁还原氧化石墨烯膨润土有效去除六价铬

IF 1.1 4区 地球科学 Q4 CHEMISTRY, PHYSICAL Clay Minerals Pub Date : 2023-02-16 DOI:10.1180/clm.2023.4
Shoufan Cao, Jingtao Guo, Jianchao Ma, Jin Pang, Siyu Zhang, Haidong Hao, Danlei Wu, Shaobin Wang
{"title":"磁还原氧化石墨烯膨润土有效去除六价铬","authors":"Shoufan Cao, Jingtao Guo, Jianchao Ma, Jin Pang, Siyu Zhang, Haidong Hao, Danlei Wu, Shaobin Wang","doi":"10.1180/clm.2023.4","DOIUrl":null,"url":null,"abstract":"Abstract Water pollution by hexavalent chromium (Cr(VI)) is widespread and problematic. As a result, more research into economic Cr(VI) removal is needed. In this study, we created and employed an adsorption–reduction mechanism to remove Cr(VI). Magnetically reduced graphene oxide bentonite (MrGO-BT) is acid resistant and can undergo magnetic separation. The hydroxyl group of chitosan (CS) condensed with the functional groups on the surface of bentonite (BT), and the MrGO-BT sandwich has been fabricated and constructed from an Fe3O4 core layer sandwiched by reduced graphene oxide (rGO) and a BT shell, with CS acting as a crosslinker. Cr(VI) elimination by MrGO-BT was exothermic and spontaneous according to thermodynamic analyses. The adsorption kinetics and adsorption isotherms were characterized by the pseudo-second order kinetic theory and the Langmuir model, respectively. Regarding the elimination of Cr(VI), the greatest adsorption ability for Cr(VI) elimination achieved was 91.5 mg g–1. Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy suggested that Cr(VI) was reduced by C–O–H on MrGO-BT to produce Cr(III) and H–C=O, and that Cr(III) chelated with amino groups or exchanged with BT after intercalation. In addition, the introduction of Cu2+ increased the positive charge of MrGO-BT and amplified the electrostatic interaction between Cr2O72− and HCrO4–, which is what caused Cr(VI) to be eliminated. Cu2+ and reduced Cr(III) combined with -NH2 on the surface of MrGO-BT to form -NH-Cr(III) or -NH-Cu2+, and Cr(VI) elimination via chelation and ion exchange was confirmed. MrGO-BT is shown to be an adsorbent with high acid resistance and good magnetic responsiveness and stability.","PeriodicalId":10311,"journal":{"name":"Clay Minerals","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effective removal of hexavalent chromium with magnetically reduced graphene oxide bentonite\",\"authors\":\"Shoufan Cao, Jingtao Guo, Jianchao Ma, Jin Pang, Siyu Zhang, Haidong Hao, Danlei Wu, Shaobin Wang\",\"doi\":\"10.1180/clm.2023.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Water pollution by hexavalent chromium (Cr(VI)) is widespread and problematic. As a result, more research into economic Cr(VI) removal is needed. In this study, we created and employed an adsorption–reduction mechanism to remove Cr(VI). Magnetically reduced graphene oxide bentonite (MrGO-BT) is acid resistant and can undergo magnetic separation. The hydroxyl group of chitosan (CS) condensed with the functional groups on the surface of bentonite (BT), and the MrGO-BT sandwich has been fabricated and constructed from an Fe3O4 core layer sandwiched by reduced graphene oxide (rGO) and a BT shell, with CS acting as a crosslinker. Cr(VI) elimination by MrGO-BT was exothermic and spontaneous according to thermodynamic analyses. The adsorption kinetics and adsorption isotherms were characterized by the pseudo-second order kinetic theory and the Langmuir model, respectively. Regarding the elimination of Cr(VI), the greatest adsorption ability for Cr(VI) elimination achieved was 91.5 mg g–1. Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy suggested that Cr(VI) was reduced by C–O–H on MrGO-BT to produce Cr(III) and H–C=O, and that Cr(III) chelated with amino groups or exchanged with BT after intercalation. In addition, the introduction of Cu2+ increased the positive charge of MrGO-BT and amplified the electrostatic interaction between Cr2O72− and HCrO4–, which is what caused Cr(VI) to be eliminated. Cu2+ and reduced Cr(III) combined with -NH2 on the surface of MrGO-BT to form -NH-Cr(III) or -NH-Cu2+, and Cr(VI) elimination via chelation and ion exchange was confirmed. MrGO-BT is shown to be an adsorbent with high acid resistance and good magnetic responsiveness and stability.\",\"PeriodicalId\":10311,\"journal\":{\"name\":\"Clay Minerals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clay Minerals\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1180/clm.2023.4\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clay Minerals","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1180/clm.2023.4","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 2

摘要

摘要六价铬(Cr(VI))对水的污染是普遍存在的问题。因此,需要对经济去除Cr(VI)进行更多的研究。在本研究中,我们创建并采用了吸附-还原机制来去除Cr(VI)。磁性还原氧化石墨烯膨润土(MrGO BT)具有耐酸性,可以进行磁性分离。壳聚糖(CS)的羟基与膨润土(BT)表面的官能团缩合,由还原氧化石墨烯(rGO)夹在Fe3O4芯层和BT壳之间,CS作为交联剂,制备并构建了MrGO-BT三明治。根据热力学分析,MrGO BT对Cr(VI)的消除是放热和自发的。分别用拟二阶动力学理论和Langmuir模型对吸附动力学和吸附等温线进行了表征。关于Cr(VI)的去除,实现的Cr(Ⅵ)去除的最大吸附能力为91.5 mg g–1。傅立叶变换红外光谱和X射线光电子能谱表明,Cr(VI)在MrGO-BT上被C–O–H还原,产生Cr(III)和H–C=O,并且Cr(Ⅲ)在嵌入后与氨基螯合或与BT交换。此外,Cu2+的引入增加了MrGO BT的正电荷,并放大了Cr2O72−和HCrO4–之间的静电相互作用,这就是Cr(VI)被消除的原因。Cu2+和还原的Cr(III)在MrGO-BT表面与-NH2结合形成-NHCr(III)或-NH-Cu2+,并通过螯合和离子交换消除Cr(VI)。MrGO-BT被证明是一种具有高耐酸性和良好磁响应性和稳定性的吸附剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effective removal of hexavalent chromium with magnetically reduced graphene oxide bentonite
Abstract Water pollution by hexavalent chromium (Cr(VI)) is widespread and problematic. As a result, more research into economic Cr(VI) removal is needed. In this study, we created and employed an adsorption–reduction mechanism to remove Cr(VI). Magnetically reduced graphene oxide bentonite (MrGO-BT) is acid resistant and can undergo magnetic separation. The hydroxyl group of chitosan (CS) condensed with the functional groups on the surface of bentonite (BT), and the MrGO-BT sandwich has been fabricated and constructed from an Fe3O4 core layer sandwiched by reduced graphene oxide (rGO) and a BT shell, with CS acting as a crosslinker. Cr(VI) elimination by MrGO-BT was exothermic and spontaneous according to thermodynamic analyses. The adsorption kinetics and adsorption isotherms were characterized by the pseudo-second order kinetic theory and the Langmuir model, respectively. Regarding the elimination of Cr(VI), the greatest adsorption ability for Cr(VI) elimination achieved was 91.5 mg g–1. Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy suggested that Cr(VI) was reduced by C–O–H on MrGO-BT to produce Cr(III) and H–C=O, and that Cr(III) chelated with amino groups or exchanged with BT after intercalation. In addition, the introduction of Cu2+ increased the positive charge of MrGO-BT and amplified the electrostatic interaction between Cr2O72− and HCrO4–, which is what caused Cr(VI) to be eliminated. Cu2+ and reduced Cr(III) combined with -NH2 on the surface of MrGO-BT to form -NH-Cr(III) or -NH-Cu2+, and Cr(VI) elimination via chelation and ion exchange was confirmed. MrGO-BT is shown to be an adsorbent with high acid resistance and good magnetic responsiveness and stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Clay Minerals
Clay Minerals 地学-矿物学
CiteScore
3.00
自引率
20.00%
发文量
25
审稿时长
6 months
期刊介绍: Clay Minerals is an international journal of mineral sciences, published four times a year, including research papers about clays, clay minerals and related materials, natural or synthetic. The journal includes papers on Earth processes soil science, geology/mineralogy, chemistry/material science, colloid/surface science, applied science and technology and health/ environment topics. The journal has an international editorial board with members from fifteen countries.
期刊最新文献
Compress Earthen Blocks using Mbam alluvial clays: Performances Comparison using Statistical Analysis of Cement versus Heat-stabilized Blocks Facile preparation of sepiolite-based composites and their antibacterial/rheological properties Production of lightweight expanded aggregates from smectite clay, palygorskite rich-sediment and phosphate sludge Formation of iron-rich phyllosilicates in the FeO-SiO2-H2O system during hydrothermal synthesis as a function of pH Role of particle gradation of clay-sand mixture on interfacial adhesion performance of polymer coating
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1