实时PPP应用于飞机飞行试验

IF 0.5 Q3 Earth and Planetary Sciences Boletim De Ciencias Geodesicas Pub Date : 2019-09-04 DOI:10.1590/S1982-21702019000200009
J. Monico, H. Marques, Ítalo Tsuchiya, Rogério Takeshi Oyama, W. Queiroz, Mauricio Cardoso de Souza, J. Wentz
{"title":"实时PPP应用于飞机飞行试验","authors":"J. Monico, H. Marques, Ítalo Tsuchiya, Rogério Takeshi Oyama, W. Queiroz, Mauricio Cardoso de Souza, J. Wentz","doi":"10.1590/S1982-21702019000200009","DOIUrl":null,"url":null,"abstract":"The availability in real time of GNSS satellites orbits, clock corrections and code and phase biases provided the possibility of application of Real Time Precise Point Positioning (RTPPP). This paper presents the methodology concerning RTPPP and application to kinematic trajectories of airplane flight tests, but without using the carrier phase bias. So, it is PPP float solution. It requires RT positioning estimation, task that most of time presents certain difficulties due to loss of communication or of satellites during maneuvers of the airplane. However, if the corrections become unavailable for a certain period of time, the system starts using the ultra-rapid IGS orbits. The experiments were accomplished taking into account a case simulating RT and another in fact RT, but storing data and corrections for post processing. The PPP solutions obtained either simulating RT or in RT were compared against the PPP post processed solution that uses the final clock and orbit corrections. Then, statistics were generated to analyze the quality of both results. They were applied to kinematic trajectory that on average was 360 km/h, reaching about 600 km/h. The results provided accuracy better than the requisites for such cases which is of about 80 cm in height.","PeriodicalId":55347,"journal":{"name":"Boletim De Ciencias Geodesicas","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2019-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1590/S1982-21702019000200009","citationCount":"10","resultStr":"{\"title\":\"REAL TIME PPP APPLIED TO AIRPLANE FLIGTHT TESTS\",\"authors\":\"J. Monico, H. Marques, Ítalo Tsuchiya, Rogério Takeshi Oyama, W. Queiroz, Mauricio Cardoso de Souza, J. Wentz\",\"doi\":\"10.1590/S1982-21702019000200009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The availability in real time of GNSS satellites orbits, clock corrections and code and phase biases provided the possibility of application of Real Time Precise Point Positioning (RTPPP). This paper presents the methodology concerning RTPPP and application to kinematic trajectories of airplane flight tests, but without using the carrier phase bias. So, it is PPP float solution. It requires RT positioning estimation, task that most of time presents certain difficulties due to loss of communication or of satellites during maneuvers of the airplane. However, if the corrections become unavailable for a certain period of time, the system starts using the ultra-rapid IGS orbits. The experiments were accomplished taking into account a case simulating RT and another in fact RT, but storing data and corrections for post processing. The PPP solutions obtained either simulating RT or in RT were compared against the PPP post processed solution that uses the final clock and orbit corrections. Then, statistics were generated to analyze the quality of both results. They were applied to kinematic trajectory that on average was 360 km/h, reaching about 600 km/h. The results provided accuracy better than the requisites for such cases which is of about 80 cm in height.\",\"PeriodicalId\":55347,\"journal\":{\"name\":\"Boletim De Ciencias Geodesicas\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1590/S1982-21702019000200009\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boletim De Ciencias Geodesicas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/S1982-21702019000200009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletim De Ciencias Geodesicas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/S1982-21702019000200009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 10

摘要

全球导航卫星系统卫星轨道实时可用性、时钟校正以及编码和相位偏差为应用实时精确点定位提供了可能性。本文介绍了RTPPP的方法及其在飞机飞行试验运动学轨迹中的应用,但不使用载波相位偏差。所以,这是PPP浮动解决方案。它需要RT定位估计,由于飞机机动过程中通信或卫星的丢失,这项任务在大多数情况下都会遇到一定的困难。然而,如果在一段时间内无法进行校正,系统将开始使用超快速IGS轨道。实验是在考虑一个模拟RT的情况和另一个实际RT的情况下完成的,但存储数据和校正以进行后处理。将模拟RT或在RT中获得的PPP解决方案与使用最终时钟和轨道校正的PPP后处理解决方案进行比较。然后,生成统计数据来分析这两个结果的质量。它们被应用于平均360公里/小时的运动轨迹,达到约600公里/小时。该结果提供了比高度约为80cm的这种情况的必要条件更好的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
REAL TIME PPP APPLIED TO AIRPLANE FLIGTHT TESTS
The availability in real time of GNSS satellites orbits, clock corrections and code and phase biases provided the possibility of application of Real Time Precise Point Positioning (RTPPP). This paper presents the methodology concerning RTPPP and application to kinematic trajectories of airplane flight tests, but without using the carrier phase bias. So, it is PPP float solution. It requires RT positioning estimation, task that most of time presents certain difficulties due to loss of communication or of satellites during maneuvers of the airplane. However, if the corrections become unavailable for a certain period of time, the system starts using the ultra-rapid IGS orbits. The experiments were accomplished taking into account a case simulating RT and another in fact RT, but storing data and corrections for post processing. The PPP solutions obtained either simulating RT or in RT were compared against the PPP post processed solution that uses the final clock and orbit corrections. Then, statistics were generated to analyze the quality of both results. They were applied to kinematic trajectory that on average was 360 km/h, reaching about 600 km/h. The results provided accuracy better than the requisites for such cases which is of about 80 cm in height.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Boletim De Ciencias Geodesicas
Boletim De Ciencias Geodesicas Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
1.70
自引率
20.00%
发文量
10
审稿时长
3 months
期刊介绍: The Boletim de Ciências Geodésicas publishes original papers in the area of Geodetic Sciences and correlated ones (Geodesy, Photogrammetry and Remote Sensing, Cartography and Geographic Information Systems). Submitted articles must be unpublished, and should not be under consideration for publication in any other journal. Previous publication of the paper in conference proceedings would not violate the originality requirements. Articles must be written preferably in English language.
期刊最新文献
Spatial and seasonal dynamics of rainfall in subtropical Brazil Exploring spatio-temporal patterns of OpenStreetMap (OSM) contributions in heterogeneous urban areas Harmonizing income classes from 2000 and 2010 Brazilian censuses Study of the geometry influence of the support points in coordonates transformation: application from WGS84 to NS59 datum Speckle reduction for Sentinel-1A SAR images in the Semi-arid caatinga region, Brazil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1