Daniel Andrade Maciel, Nima Pahlevan, Claudio Clemente Faria Barbosa, Evlyn Márcia Leão de Moraes de Novo, Rejane Souza Paulino, Vitor Souza Martins, Eric Vermote, Christopher J. Crawford
{"title":"陆地卫星表面反射率档案对水生科学的有效性:对基于云的分析的影响","authors":"Daniel Andrade Maciel, Nima Pahlevan, Claudio Clemente Faria Barbosa, Evlyn Márcia Leão de Moraes de Novo, Rejane Souza Paulino, Vitor Souza Martins, Eric Vermote, Christopher J. Crawford","doi":"10.1002/lol2.10344","DOIUrl":null,"url":null,"abstract":"<p>Originally developed for terrestrial science and applications, the US Geological Survey Landsat surface reflectance (SR) archive spanning ~ 40 yr of observations has been increasingly utilized in large-scale water-quality studies. These products, however, have not been rigorously validated using in situ measured reflectance. This letter quantifies and demonstrates the quality of the SR products by harnessing a sizeable global dataset (<i>N</i> = 1100). We found that the Landsat 8/9 SR in the green and red bands marginally meet the targeted accuracy requirements (30%), whereas the uncertainties in the blue and coastal-aerosol bands ranged from 48% to 110%. We further observed > +25% biases in the visible bands of Landsat 5/7 SR, which can introduce an apparent downward trend when applied in time-series analyses combined with Landsat 8/9. Users must exercise caution when using this archive for trend analyses, and progress in atmospheric correction is required to foster advanced applications of the Landsat archive for aquatic science.</p>","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2023-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://aslopubs.onlinelibrary.wiley.com/doi/epdf/10.1002/lol2.10344","citationCount":"1","resultStr":"{\"title\":\"Validity of the Landsat surface reflectance archive for aquatic science: Implications for cloud-based analysis\",\"authors\":\"Daniel Andrade Maciel, Nima Pahlevan, Claudio Clemente Faria Barbosa, Evlyn Márcia Leão de Moraes de Novo, Rejane Souza Paulino, Vitor Souza Martins, Eric Vermote, Christopher J. Crawford\",\"doi\":\"10.1002/lol2.10344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Originally developed for terrestrial science and applications, the US Geological Survey Landsat surface reflectance (SR) archive spanning ~ 40 yr of observations has been increasingly utilized in large-scale water-quality studies. These products, however, have not been rigorously validated using in situ measured reflectance. This letter quantifies and demonstrates the quality of the SR products by harnessing a sizeable global dataset (<i>N</i> = 1100). We found that the Landsat 8/9 SR in the green and red bands marginally meet the targeted accuracy requirements (30%), whereas the uncertainties in the blue and coastal-aerosol bands ranged from 48% to 110%. We further observed > +25% biases in the visible bands of Landsat 5/7 SR, which can introduce an apparent downward trend when applied in time-series analyses combined with Landsat 8/9. Users must exercise caution when using this archive for trend analyses, and progress in atmospheric correction is required to foster advanced applications of the Landsat archive for aquatic science.</p>\",\"PeriodicalId\":18128,\"journal\":{\"name\":\"Limnology and Oceanography Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2023-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://aslopubs.onlinelibrary.wiley.com/doi/epdf/10.1002/lol2.10344\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Limnology and Oceanography Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/lol2.10344\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"LIMNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lol2.10344","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
Validity of the Landsat surface reflectance archive for aquatic science: Implications for cloud-based analysis
Originally developed for terrestrial science and applications, the US Geological Survey Landsat surface reflectance (SR) archive spanning ~ 40 yr of observations has been increasingly utilized in large-scale water-quality studies. These products, however, have not been rigorously validated using in situ measured reflectance. This letter quantifies and demonstrates the quality of the SR products by harnessing a sizeable global dataset (N = 1100). We found that the Landsat 8/9 SR in the green and red bands marginally meet the targeted accuracy requirements (30%), whereas the uncertainties in the blue and coastal-aerosol bands ranged from 48% to 110%. We further observed > +25% biases in the visible bands of Landsat 5/7 SR, which can introduce an apparent downward trend when applied in time-series analyses combined with Landsat 8/9. Users must exercise caution when using this archive for trend analyses, and progress in atmospheric correction is required to foster advanced applications of the Landsat archive for aquatic science.
期刊介绍:
Limnology and Oceanography Letters (LO-Letters) serves as a platform for communicating the latest innovative and trend-setting research in the aquatic sciences. Manuscripts submitted to LO-Letters are expected to present high-impact, cutting-edge results, discoveries, or conceptual developments across all areas of limnology and oceanography, including their integration. Selection criteria for manuscripts include their broad relevance to the field, strong empirical and conceptual foundations, succinct and elegant conclusions, and potential to advance knowledge in aquatic sciences.