一种鲕状铁矿的磁化焙烧和磁选选矿

IF 1.1 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Iranian Journal of Materials Science and Engineering Pub Date : 2020-09-10 DOI:10.22068/IJMSE.17.3.17
M. Monzavi, S. Raygan
{"title":"一种鲕状铁矿的磁化焙烧和磁选选矿","authors":"M. Monzavi, S. Raygan","doi":"10.22068/IJMSE.17.3.17","DOIUrl":null,"url":null,"abstract":"Low-grade iron ores contain many impurities and are difficult to upgrade to make appropriate concentrates for the blast furnace (BF) or direct reduction (DR) technologies. In this study, the beneficiation of an Oolitic-iron ore (containing 45.46wt% Fe2O3) with magnetization roasting by non-coking coal (containing 62.1wt% fixed carbon) under a stream of argon gas was investigated. Then, a 2500 Gaussian magnet was used for dry magnetic separation method. The effects of roasting time, ore particle size and reaction temperature on the amount of separated part and grade of the product were examined. It was found out that the hematite inside the ore could almost be completely converted into magnetite with stoichiometric ratio of coal to ore at the roasting temperature of 625 °C for 25 min. Under the optimum condition, a high amount of magnetic part of the product (72.22 wt.%) with a grade of 92.7% was separated. The most important point in this process was the prevention of reduced ore from re-oxidation reaction by controlling roasting atmosphere, time and temperature. In addition, different analytical methods such as X-ray fluorescence (XRF), X-ray diffraction (XRD), differential thermal analysis (DTA), thermogravimetric analysis (TG) and scanning electron microscopy (SEM) were applied to investigate and expound the results..","PeriodicalId":14603,"journal":{"name":"Iranian Journal of Materials Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2020-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"BenefIciation of an Oolitic-Iron ORE by Magnetization Roasting and Magnetic Separation\",\"authors\":\"M. Monzavi, S. Raygan\",\"doi\":\"10.22068/IJMSE.17.3.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low-grade iron ores contain many impurities and are difficult to upgrade to make appropriate concentrates for the blast furnace (BF) or direct reduction (DR) technologies. In this study, the beneficiation of an Oolitic-iron ore (containing 45.46wt% Fe2O3) with magnetization roasting by non-coking coal (containing 62.1wt% fixed carbon) under a stream of argon gas was investigated. Then, a 2500 Gaussian magnet was used for dry magnetic separation method. The effects of roasting time, ore particle size and reaction temperature on the amount of separated part and grade of the product were examined. It was found out that the hematite inside the ore could almost be completely converted into magnetite with stoichiometric ratio of coal to ore at the roasting temperature of 625 °C for 25 min. Under the optimum condition, a high amount of magnetic part of the product (72.22 wt.%) with a grade of 92.7% was separated. The most important point in this process was the prevention of reduced ore from re-oxidation reaction by controlling roasting atmosphere, time and temperature. In addition, different analytical methods such as X-ray fluorescence (XRF), X-ray diffraction (XRD), differential thermal analysis (DTA), thermogravimetric analysis (TG) and scanning electron microscopy (SEM) were applied to investigate and expound the results..\",\"PeriodicalId\":14603,\"journal\":{\"name\":\"Iranian Journal of Materials Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Materials Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22068/IJMSE.17.3.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Materials Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22068/IJMSE.17.3.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

低品位铁矿含有许多杂质,难以升级为适合高炉或直接还原技术的精矿。采用含固定碳62.1wt%的非炼焦煤(含固定碳62.1wt%)在氩气流下进行磁化焙烧,研究了某鲕状铁矿(含Fe2O3 45.46wt%)的选矿工艺。然后,采用2500高斯磁体进行干式磁选。考察了焙烧时间、矿石粒度和反应温度对产品分选量和品位的影响。结果表明,在625℃焙烧25 min条件下,矿石中赤铁矿几乎可以完全转化为煤矿比为化学量的磁铁矿,在最佳焙烧条件下,分离出了品位为92.7%的高磁性部分(72.22 wt.%)。控制焙烧气氛、焙烧时间和焙烧温度,防止还原矿发生再氧化反应是该工艺的重点。此外,采用x射线荧光(XRF)、x射线衍射(XRD)、差热分析(DTA)、热重分析(TG)和扫描电镜(SEM)等不同的分析方法对结果进行了研究和阐述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BenefIciation of an Oolitic-Iron ORE by Magnetization Roasting and Magnetic Separation
Low-grade iron ores contain many impurities and are difficult to upgrade to make appropriate concentrates for the blast furnace (BF) or direct reduction (DR) technologies. In this study, the beneficiation of an Oolitic-iron ore (containing 45.46wt% Fe2O3) with magnetization roasting by non-coking coal (containing 62.1wt% fixed carbon) under a stream of argon gas was investigated. Then, a 2500 Gaussian magnet was used for dry magnetic separation method. The effects of roasting time, ore particle size and reaction temperature on the amount of separated part and grade of the product were examined. It was found out that the hematite inside the ore could almost be completely converted into magnetite with stoichiometric ratio of coal to ore at the roasting temperature of 625 °C for 25 min. Under the optimum condition, a high amount of magnetic part of the product (72.22 wt.%) with a grade of 92.7% was separated. The most important point in this process was the prevention of reduced ore from re-oxidation reaction by controlling roasting atmosphere, time and temperature. In addition, different analytical methods such as X-ray fluorescence (XRF), X-ray diffraction (XRD), differential thermal analysis (DTA), thermogravimetric analysis (TG) and scanning electron microscopy (SEM) were applied to investigate and expound the results..
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iranian Journal of Materials Science and Engineering
Iranian Journal of Materials Science and Engineering MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
1.30
自引率
10.00%
发文量
0
审稿时长
18 weeks
期刊最新文献
Study of the Effect of Acid-base Character of the Lamellar Double Hydroxides "Zn3Al-CO3" and of the "Ghassoul" Clay on Their Redox Potential and Antimicrobial Activities Dry Sliding Friction and Wear of SnPb-Solder Affected Copper against Stainless Steel Counter Surface The Effect of Tin Concentration on Microstructural, Optical and Electrical Properties of ITO Nanoparticles Synthesized Using Green Method Physical and Structural Characteristics of Gel-derived Glasses Prepared via Different Drying Procedures Assessment of Structure, Dielectric and Gamma-Shielding Properties of Chemically Treated Natural Kaolinitic Clay
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1