{"title":"Amore:基于cnn的动态环境中运动物体的检测和移除","authors":"A. Pancham, D. Withey, G. Bright","doi":"10.7166/31-4-2180","DOIUrl":null,"url":null,"abstract":"Simultaneous Localisation And Mapping (SLAM) In Dynamic Environments (IDE) may be improved by detecting and removing moving objects that may otherwise lead to localisation errors. This work combines convolutional neural networks and feature clustering to serve as A Moving Object detection and REmoval method (AMORE) that removes moving objects from the SLAM process and improves the performance of SLAMIDE. Experiments show that a visual SLAM algorithm and AMORE combined are more robust with high-dynamic objects than the SLAM algorithm alone, and performance is comparable to state-of-the-art visual SLAMIDE approaches. AMORE has the advantage of simplicity, requiring minimal implementation effort.","PeriodicalId":49493,"journal":{"name":"South African Journal of Industrial Engineering","volume":"31 1","pages":"46-58"},"PeriodicalIF":0.5000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AMORE: CNN-BASED MOVING OBJECT DETECTION AND REMOVAL TOWARDS SLAM IN DYNAMIC ENVIRONMENTS\",\"authors\":\"A. Pancham, D. Withey, G. Bright\",\"doi\":\"10.7166/31-4-2180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simultaneous Localisation And Mapping (SLAM) In Dynamic Environments (IDE) may be improved by detecting and removing moving objects that may otherwise lead to localisation errors. This work combines convolutional neural networks and feature clustering to serve as A Moving Object detection and REmoval method (AMORE) that removes moving objects from the SLAM process and improves the performance of SLAMIDE. Experiments show that a visual SLAM algorithm and AMORE combined are more robust with high-dynamic objects than the SLAM algorithm alone, and performance is comparable to state-of-the-art visual SLAMIDE approaches. AMORE has the advantage of simplicity, requiring minimal implementation effort.\",\"PeriodicalId\":49493,\"journal\":{\"name\":\"South African Journal of Industrial Engineering\",\"volume\":\"31 1\",\"pages\":\"46-58\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"South African Journal of Industrial Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.7166/31-4-2180\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"South African Journal of Industrial Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.7166/31-4-2180","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
AMORE: CNN-BASED MOVING OBJECT DETECTION AND REMOVAL TOWARDS SLAM IN DYNAMIC ENVIRONMENTS
Simultaneous Localisation And Mapping (SLAM) In Dynamic Environments (IDE) may be improved by detecting and removing moving objects that may otherwise lead to localisation errors. This work combines convolutional neural networks and feature clustering to serve as A Moving Object detection and REmoval method (AMORE) that removes moving objects from the SLAM process and improves the performance of SLAMIDE. Experiments show that a visual SLAM algorithm and AMORE combined are more robust with high-dynamic objects than the SLAM algorithm alone, and performance is comparable to state-of-the-art visual SLAMIDE approaches. AMORE has the advantage of simplicity, requiring minimal implementation effort.
期刊介绍:
The South African Journal of Industrial Engineering (SAJIE) publishes articles with the emphasis on research, development and application within the fields of Industrial Engineering and Engineering and Technology Management. In this way, it aims to contribute to the further development of these fields of study and to serve as a vehicle for the effective interchange of knowledge, ideas and experience between the research and training oriented institutions and the application oriented industry. Articles on practical applications, original research and meaningful new developments as well as state of the art surveys are encouraged.