Leokadiya V. Zorina, Sergey V. Simonov, Valentina D. Sasnovskaya, Eduard B. Yagubskii
{"title":"Cr(III)与2,6-二乙酰吡啶-双(硫代氨基脲)分子配合物的合成及晶体结构","authors":"Leokadiya V. Zorina, Sergey V. Simonov, Valentina D. Sasnovskaya, Eduard B. Yagubskii","doi":"10.1007/s11243-023-00536-9","DOIUrl":null,"url":null,"abstract":"<div><p>The first molecular complexes of Cr(III) with chelating 2,6-diacetylpyridine-bis(thiosemicarbazone) Schiff-base ligand (H<sub>2</sub>daptsc), [Cr(Hdaptsc)(H<sub>2</sub>O)<sub>1.4</sub>(CH<sub>3</sub>OH)<sub>0.6</sub>](NO<sub>3</sub>)<sub>2</sub>·1.4CH<sub>3</sub>OH (<b>1</b>), [Cr(Hdaptsc)(H<sub>2</sub>O)<sub>2</sub>](NO<sub>3</sub>)<sub>2</sub>·1.3C<sub>2</sub>H<sub>5</sub>OH (<b>2</b>), [Cr(Hdaptsc)(H<sub>2</sub>O)<sub>2</sub>](NO<sub>3</sub>)<sub>2</sub>·H<sub>2</sub>O (<b>3</b>), [Cr(H<sub>2</sub>daptsc)(H<sub>2</sub>O)<sub>2</sub>](NO<sub>3</sub>)<sub>3</sub>·<span>2h</span><sub>2</sub>O (<b>4</b>), [Cr(Hdaptsc)(N<sub>3</sub>)<sub>2</sub>]·CH<sub>3</sub>OH (<b>5</b>), [Cr(Hdaptsc)(N<sub>3</sub>)<sub>2</sub>]·1.25H<sub>2</sub>O (<b>6</b>) have been synthesized, and their crystal structures have been studied. Structural analysis has shown that in all the crystals, the Cr(III) cation is seven-coordinated by N<sub>3</sub>S<sub>2</sub> atoms of the pentadentate ligand in the equatorial plane and two O or N atoms of water/methanol or N<sub>3</sub>‾ axial ligands. The pentadentate ligand is fully protonated in <b>4</b> and mono-deprotonated in one hydrazinic –NH group in all the other compounds. The degree of deprotonation depends on the pH of the reaction medium. The remaining proton in Hdaptscˉ is ordered and localized on one side of the ligand. As a result, the Hdaptscˉ ligand possesses a pronounced difference in Cr-S/N bond distances for the neutral protonated and negatively charged deprotonated halves due to the strong Jahn–Teller effect for the high-spin 3d<sup>3</sup> configuration in the pentagonal bipyramidal (PBP) ligand field.</p><h3>Graphical abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":803,"journal":{"name":"Transition Metal Chemistry","volume":"48 4","pages":"215 - 226"},"PeriodicalIF":1.6000,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First molecular complexes of Cr(III) with 2,6-diacetylpyridine-bis(thiosemicarbazone): synthesis and crystal structures\",\"authors\":\"Leokadiya V. Zorina, Sergey V. Simonov, Valentina D. Sasnovskaya, Eduard B. Yagubskii\",\"doi\":\"10.1007/s11243-023-00536-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The first molecular complexes of Cr(III) with chelating 2,6-diacetylpyridine-bis(thiosemicarbazone) Schiff-base ligand (H<sub>2</sub>daptsc), [Cr(Hdaptsc)(H<sub>2</sub>O)<sub>1.4</sub>(CH<sub>3</sub>OH)<sub>0.6</sub>](NO<sub>3</sub>)<sub>2</sub>·1.4CH<sub>3</sub>OH (<b>1</b>), [Cr(Hdaptsc)(H<sub>2</sub>O)<sub>2</sub>](NO<sub>3</sub>)<sub>2</sub>·1.3C<sub>2</sub>H<sub>5</sub>OH (<b>2</b>), [Cr(Hdaptsc)(H<sub>2</sub>O)<sub>2</sub>](NO<sub>3</sub>)<sub>2</sub>·H<sub>2</sub>O (<b>3</b>), [Cr(H<sub>2</sub>daptsc)(H<sub>2</sub>O)<sub>2</sub>](NO<sub>3</sub>)<sub>3</sub>·<span>2h</span><sub>2</sub>O (<b>4</b>), [Cr(Hdaptsc)(N<sub>3</sub>)<sub>2</sub>]·CH<sub>3</sub>OH (<b>5</b>), [Cr(Hdaptsc)(N<sub>3</sub>)<sub>2</sub>]·1.25H<sub>2</sub>O (<b>6</b>) have been synthesized, and their crystal structures have been studied. Structural analysis has shown that in all the crystals, the Cr(III) cation is seven-coordinated by N<sub>3</sub>S<sub>2</sub> atoms of the pentadentate ligand in the equatorial plane and two O or N atoms of water/methanol or N<sub>3</sub>‾ axial ligands. The pentadentate ligand is fully protonated in <b>4</b> and mono-deprotonated in one hydrazinic –NH group in all the other compounds. The degree of deprotonation depends on the pH of the reaction medium. The remaining proton in Hdaptscˉ is ordered and localized on one side of the ligand. As a result, the Hdaptscˉ ligand possesses a pronounced difference in Cr-S/N bond distances for the neutral protonated and negatively charged deprotonated halves due to the strong Jahn–Teller effect for the high-spin 3d<sup>3</sup> configuration in the pentagonal bipyramidal (PBP) ligand field.</p><h3>Graphical abstract</h3>\\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\\n </div>\",\"PeriodicalId\":803,\"journal\":{\"name\":\"Transition Metal Chemistry\",\"volume\":\"48 4\",\"pages\":\"215 - 226\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transition Metal Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11243-023-00536-9\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transition Metal Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11243-023-00536-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
First molecular complexes of Cr(III) with 2,6-diacetylpyridine-bis(thiosemicarbazone): synthesis and crystal structures
The first molecular complexes of Cr(III) with chelating 2,6-diacetylpyridine-bis(thiosemicarbazone) Schiff-base ligand (H2daptsc), [Cr(Hdaptsc)(H2O)1.4(CH3OH)0.6](NO3)2·1.4CH3OH (1), [Cr(Hdaptsc)(H2O)2](NO3)2·1.3C2H5OH (2), [Cr(Hdaptsc)(H2O)2](NO3)2·H2O (3), [Cr(H2daptsc)(H2O)2](NO3)3·2h2O (4), [Cr(Hdaptsc)(N3)2]·CH3OH (5), [Cr(Hdaptsc)(N3)2]·1.25H2O (6) have been synthesized, and their crystal structures have been studied. Structural analysis has shown that in all the crystals, the Cr(III) cation is seven-coordinated by N3S2 atoms of the pentadentate ligand in the equatorial plane and two O or N atoms of water/methanol or N3‾ axial ligands. The pentadentate ligand is fully protonated in 4 and mono-deprotonated in one hydrazinic –NH group in all the other compounds. The degree of deprotonation depends on the pH of the reaction medium. The remaining proton in Hdaptscˉ is ordered and localized on one side of the ligand. As a result, the Hdaptscˉ ligand possesses a pronounced difference in Cr-S/N bond distances for the neutral protonated and negatively charged deprotonated halves due to the strong Jahn–Teller effect for the high-spin 3d3 configuration in the pentagonal bipyramidal (PBP) ligand field.
期刊介绍:
Transition Metal Chemistry is an international journal designed to deal with all aspects of the subject embodied in the title: the preparation of transition metal-based molecular compounds of all kinds (including complexes of the Group 12 elements), their structural, physical, kinetic, catalytic and biological properties, their use in chemical synthesis as well as their application in the widest context, their role in naturally occurring systems etc.
Manuscripts submitted to the journal should be of broad appeal to the readership and for this reason, papers which are confined to more specialised studies such as the measurement of solution phase equilibria or thermal decomposition studies, or papers which include extensive material on f-block elements, or papers dealing with non-molecular materials, will not normally be considered for publication. Work describing new ligands or coordination geometries must provide sufficient evidence for the confident assignment of structural formulae; this will usually take the form of one or more X-ray crystal structures.