Kelly Torralvo, F. Durgante, C. Pasquini, W. Magnusson
{"title":"近红外光谱法鉴定活无尾蛛:实现现场物种的快速和自动化鉴定","authors":"Kelly Torralvo, F. Durgante, C. Pasquini, W. Magnusson","doi":"10.1177/09670335231156472","DOIUrl":null,"url":null,"abstract":"In megadiverse regions, such as the Amazon, the identification of species generally requires specialists that are often not available. Therefore, the use of new species-recognition tools is necessary to streamline surveys and avoid errors in species identification that lead to ineffective decision-making. Near infrared spectroscopy is a quick and non-destructive tool that has been widely used in the recognition of biodiversity. In addition to being used as an indicator group, anurans have species with high morphological diversity, which make them the focus of studies and application of new tools that help in the identification and recognition at the species level. In this study, the viability of recognition of species of live Amazonian frogs under field conditions using the near infrared technique and portable equipment was examined. The performance of classification models based on a linear discriminant analysis, built using spectra obtained from the dorsal and ventral surfaces of four pairs of phylogenetically-close and morphologically-similar species was evaluated. It was possible to distinguish the species of live anurans in five of the eight species studied with hit rates above 80% when using only one spectral reading per individual. The overall mean of correct prediction of the models was below that of previous studies that tested the method with anurans, which are likely to be due to particularities in the acquisition of spectra under field conditions and live species. Therefore, suggestions are made to improve the predictive capacity of the techniques.","PeriodicalId":16551,"journal":{"name":"Journal of Near Infrared Spectroscopy","volume":"31 1","pages":"80 - 88"},"PeriodicalIF":1.6000,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Near infrared spectroscopy for the identification of live anurans: Towards rapid and automated identification of species in the field\",\"authors\":\"Kelly Torralvo, F. Durgante, C. Pasquini, W. Magnusson\",\"doi\":\"10.1177/09670335231156472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In megadiverse regions, such as the Amazon, the identification of species generally requires specialists that are often not available. Therefore, the use of new species-recognition tools is necessary to streamline surveys and avoid errors in species identification that lead to ineffective decision-making. Near infrared spectroscopy is a quick and non-destructive tool that has been widely used in the recognition of biodiversity. In addition to being used as an indicator group, anurans have species with high morphological diversity, which make them the focus of studies and application of new tools that help in the identification and recognition at the species level. In this study, the viability of recognition of species of live Amazonian frogs under field conditions using the near infrared technique and portable equipment was examined. The performance of classification models based on a linear discriminant analysis, built using spectra obtained from the dorsal and ventral surfaces of four pairs of phylogenetically-close and morphologically-similar species was evaluated. It was possible to distinguish the species of live anurans in five of the eight species studied with hit rates above 80% when using only one spectral reading per individual. The overall mean of correct prediction of the models was below that of previous studies that tested the method with anurans, which are likely to be due to particularities in the acquisition of spectra under field conditions and live species. Therefore, suggestions are made to improve the predictive capacity of the techniques.\",\"PeriodicalId\":16551,\"journal\":{\"name\":\"Journal of Near Infrared Spectroscopy\",\"volume\":\"31 1\",\"pages\":\"80 - 88\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Near Infrared Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1177/09670335231156472\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Near Infrared Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/09670335231156472","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Near infrared spectroscopy for the identification of live anurans: Towards rapid and automated identification of species in the field
In megadiverse regions, such as the Amazon, the identification of species generally requires specialists that are often not available. Therefore, the use of new species-recognition tools is necessary to streamline surveys and avoid errors in species identification that lead to ineffective decision-making. Near infrared spectroscopy is a quick and non-destructive tool that has been widely used in the recognition of biodiversity. In addition to being used as an indicator group, anurans have species with high morphological diversity, which make them the focus of studies and application of new tools that help in the identification and recognition at the species level. In this study, the viability of recognition of species of live Amazonian frogs under field conditions using the near infrared technique and portable equipment was examined. The performance of classification models based on a linear discriminant analysis, built using spectra obtained from the dorsal and ventral surfaces of four pairs of phylogenetically-close and morphologically-similar species was evaluated. It was possible to distinguish the species of live anurans in five of the eight species studied with hit rates above 80% when using only one spectral reading per individual. The overall mean of correct prediction of the models was below that of previous studies that tested the method with anurans, which are likely to be due to particularities in the acquisition of spectra under field conditions and live species. Therefore, suggestions are made to improve the predictive capacity of the techniques.
期刊介绍:
JNIRS — Journal of Near Infrared Spectroscopy is a peer reviewed journal, publishing original research papers, short communications, review articles and letters concerned with near infrared spectroscopy and technology, its application, new instrumentation and the use of chemometric and data handling techniques within NIR.