考虑非均匀界面相的碳纤维增强塑料弹性模量计算方法

IF 1.9 4区 材料科学 Q3 Materials Science Science and Engineering of Composite Materials Pub Date : 2022-01-01 DOI:10.1515/secm-2022-0171
Pengfei Bu, H. Ren, W. Ruan, K. Dong
{"title":"考虑非均匀界面相的碳纤维增强塑料弹性模量计算方法","authors":"Pengfei Bu, H. Ren, W. Ruan, K. Dong","doi":"10.1515/secm-2022-0171","DOIUrl":null,"url":null,"abstract":"Abstract The characteristic of interphase has a significant influence on the macroscopic performance of carbon fiber-reinforced plastics (CFRP). To investigate the effect of interphase on composite elastic modulus, a representative volume element (RVE) of unidirectional CFRP with inhomogeneous interphase was established. Based on the bridging model, a theoretical calculation method of composite elastic modulus was given. The elastic modulus of T300/BSL914C composites was obtained by the theoretical method. Results are in good agreement with the finite element method and experimental data. Four types of interphase models were given including inhomogeneous transversely isotropic, inhomogeneous isotropic, homogeneous transversely isotropic, and homogeneous isotropic. The results demonstrate that interphase type has an influence on the prediction of CFRP composites’ elastic modulus. With the increase of thickness, the prediction error of elastic modulus caused by interphase type increases rapidly. Furthermore, the relationship between composite elastic modulus and interphase thickness and stiffness is analyzed. With the increase in thickness, the changes in shear modulus G 12 and Poisson’s ratio ν23 are more evident than in other elastic properties, and with the enhancement of interphase stiffness, the increase of G 12 is the most significant.","PeriodicalId":21480,"journal":{"name":"Science and Engineering of Composite Materials","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Calculation method of elastic modulus for carbon fiber-reinforced plastics considering inhomogeneous interphase\",\"authors\":\"Pengfei Bu, H. Ren, W. Ruan, K. Dong\",\"doi\":\"10.1515/secm-2022-0171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The characteristic of interphase has a significant influence on the macroscopic performance of carbon fiber-reinforced plastics (CFRP). To investigate the effect of interphase on composite elastic modulus, a representative volume element (RVE) of unidirectional CFRP with inhomogeneous interphase was established. Based on the bridging model, a theoretical calculation method of composite elastic modulus was given. The elastic modulus of T300/BSL914C composites was obtained by the theoretical method. Results are in good agreement with the finite element method and experimental data. Four types of interphase models were given including inhomogeneous transversely isotropic, inhomogeneous isotropic, homogeneous transversely isotropic, and homogeneous isotropic. The results demonstrate that interphase type has an influence on the prediction of CFRP composites’ elastic modulus. With the increase of thickness, the prediction error of elastic modulus caused by interphase type increases rapidly. Furthermore, the relationship between composite elastic modulus and interphase thickness and stiffness is analyzed. With the increase in thickness, the changes in shear modulus G 12 and Poisson’s ratio ν23 are more evident than in other elastic properties, and with the enhancement of interphase stiffness, the increase of G 12 is the most significant.\",\"PeriodicalId\":21480,\"journal\":{\"name\":\"Science and Engineering of Composite Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Engineering of Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/secm-2022-0171\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Engineering of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/secm-2022-0171","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 1

摘要

界面特性对碳纤维增强塑料(CFRP)的宏观性能有重要影响。为了研究界面相对复合材料弹性模量的影响,建立了具有非均匀界面相的单向CFRP的代表性体积元(RVE)。基于桥接模型,给出了复合材料弹性模量的理论计算方法。采用理论方法计算了T300/BSL914C复合材料的弹性模量。计算结果与有限元方法和实验数据吻合较好。给出了非均匀横各向同性、非均匀各向同性、均匀横各向同性和均匀各向同性四种相间模型。结果表明,界面类型对CFRP复合材料弹性模量的预测有一定的影响。随着厚度的增加,由界面类型引起的弹性模量预测误差迅速增大。进一步分析了复合材料弹性模量与相间厚度和刚度的关系。随着厚度的增加,剪切模量g12和泊松比ν23的变化最为明显,且随着相间刚度的增加,g12的增加最为显著。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Calculation method of elastic modulus for carbon fiber-reinforced plastics considering inhomogeneous interphase
Abstract The characteristic of interphase has a significant influence on the macroscopic performance of carbon fiber-reinforced plastics (CFRP). To investigate the effect of interphase on composite elastic modulus, a representative volume element (RVE) of unidirectional CFRP with inhomogeneous interphase was established. Based on the bridging model, a theoretical calculation method of composite elastic modulus was given. The elastic modulus of T300/BSL914C composites was obtained by the theoretical method. Results are in good agreement with the finite element method and experimental data. Four types of interphase models were given including inhomogeneous transversely isotropic, inhomogeneous isotropic, homogeneous transversely isotropic, and homogeneous isotropic. The results demonstrate that interphase type has an influence on the prediction of CFRP composites’ elastic modulus. With the increase of thickness, the prediction error of elastic modulus caused by interphase type increases rapidly. Furthermore, the relationship between composite elastic modulus and interphase thickness and stiffness is analyzed. With the increase in thickness, the changes in shear modulus G 12 and Poisson’s ratio ν23 are more evident than in other elastic properties, and with the enhancement of interphase stiffness, the increase of G 12 is the most significant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science and Engineering of Composite Materials
Science and Engineering of Composite Materials 工程技术-材料科学:复合
CiteScore
3.10
自引率
5.30%
发文量
0
审稿时长
4 months
期刊介绍: Science and Engineering of Composite Materials is a quarterly publication which provides a forum for discussion of all aspects related to the structure and performance under simulated and actual service conditions of composites. The publication covers a variety of subjects, such as macro and micro and nano structure of materials, their mechanics and nanomechanics, the interphase, physical and chemical aging, fatigue, environmental interactions, and process modeling. The interdisciplinary character of the subject as well as the possible development and use of composites for novel and specific applications receives special attention.
期刊最新文献
Calculation of specific surface area for tight rock characterization through high-pressure mercury intrusion Sustainable concrete with partial substitution of paper pulp ash: A review A novel 3D woven carbon fiber composite with super interlayer performance hybridized by CNT tape and copper wire simultaneously The assessment of color adjustment potentials for monoshade universal composites Optimizing bending strength of laminated bamboo using confined bamboo with softwoods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1