放电等离子烧结反应合成B4C-CrB2、B4C-TiB2和B4C-TiCrB2异相陶瓷

IF 0.9 4区 材料科学 Q3 MATERIALS SCIENCE, CERAMICS Powder Metallurgy and Metal Ceramics Pub Date : 2023-06-14 DOI:10.1007/s11106-023-00342-z
T. M. Kutran, M. V. Zamula, B. A. Pokhylko, O. V. Shyrokov, V. G. Kolesnichenko, V. V. Kovalchuk, A. V. Stepanenko, H. Yu. Borodianska
{"title":"放电等离子烧结反应合成B4C-CrB2、B4C-TiB2和B4C-TiCrB2异相陶瓷","authors":"T. M. Kutran,&nbsp;M. V. Zamula,&nbsp;B. A. Pokhylko,&nbsp;O. V. Shyrokov,&nbsp;V. G. Kolesnichenko,&nbsp;V. V. Kovalchuk,&nbsp;A. V. Stepanenko,&nbsp;H. Yu. Borodianska","doi":"10.1007/s11106-023-00342-z","DOIUrl":null,"url":null,"abstract":"<div><div><p>The reactive synthesis of heterophase refractory ultrahard B<sub>4</sub>C-based composites by spark plasma sintering (SPS) was examined. To produce heterophase B<sub>4</sub>C + TiB<sub>2</sub> + CrB<sub>2</sub> ceramics, the chemical reaction between boron carbide and chromium oxide and between boron carbide and titanium carbide resulting in boron carbide–chromium diboride and boron carbide–titanium diboride composites was previously studied. The reactive sintering of B<sub>4</sub>C + Cr<sub>2</sub>O<sub>3</sub> + C and B<sub>4</sub>C + TiC mixtures using boron carbide powders obtained from the Zaporizhzhya Abrasive Plant and Donetsk Chemical Reagent Plant (Ukraine) was compared. The boron carbide powders differed in the ratio of B<sub>13</sub>C<sub>2</sub> and B<sub>4</sub>C phases and particle sizes. The reactively synthesized TiB<sub>2</sub>, CrB<sub>2</sub>, and CrTiB<sub>2</sub> boride phases positively influenced the SPS consolidation and properties of the boron carbide composites. The B<sub>4</sub>C–CrB<sub>2</sub> and B<sub>4</sub>C–TiB<sub>2</sub> ceramics subjected to Vickers hardness testing under a load of 98 N showed HV levels of 23–29 GPa and 26–28 GPa. The ceramics demonstrated brittle fracture according to the Half-penny model, with a fracture toughness of 3 MPa∙m<sup>1/2</sup> for B<sub>4</sub>C–CrB<sub>2</sub> and 4.4 MPa∙m<sup>1/2</sup> for B<sub>4</sub>C–TiB<sub>2</sub>. The 90 vol.% B<sub>4</sub>C–5.5 vol.% TiCrB<sub>2</sub>–4.5 vol.% C ceramics with ~33 GPa hardness and ~ 4 MPa∙m<sup>1/2</sup> fracture toughness were produced by reactive SPS from a mixture of B<sub>4</sub>C (Zaporizhzhya Abrasive Plant), 6.6 wt.% TiC, and 11 wt.% Cr<sub>2</sub>O<sub>3</sub>. The high strength of TiCrB<sub>2</sub> ceramics was attributed to the stress–strain state, where the matrix phase of boron carbide was subjected to compressive stresses. The high hardness and fracture toughness allow the B<sub>4</sub>C–TiCrB<sub>2</sub> composite to be classified as an ultrahard ceramic material.</p></div></div>","PeriodicalId":742,"journal":{"name":"Powder Metallurgy and Metal Ceramics","volume":"61 9-10","pages":"522 - 540"},"PeriodicalIF":0.9000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reactive Synthesis of B4C–CrB2, B4C–TiB2, AND B4C–TiCrB2 Heterophase Ceramics by Spark Plasma Sintering\",\"authors\":\"T. M. Kutran,&nbsp;M. V. Zamula,&nbsp;B. A. Pokhylko,&nbsp;O. V. Shyrokov,&nbsp;V. G. Kolesnichenko,&nbsp;V. V. Kovalchuk,&nbsp;A. V. Stepanenko,&nbsp;H. Yu. Borodianska\",\"doi\":\"10.1007/s11106-023-00342-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><p>The reactive synthesis of heterophase refractory ultrahard B<sub>4</sub>C-based composites by spark plasma sintering (SPS) was examined. To produce heterophase B<sub>4</sub>C + TiB<sub>2</sub> + CrB<sub>2</sub> ceramics, the chemical reaction between boron carbide and chromium oxide and between boron carbide and titanium carbide resulting in boron carbide–chromium diboride and boron carbide–titanium diboride composites was previously studied. The reactive sintering of B<sub>4</sub>C + Cr<sub>2</sub>O<sub>3</sub> + C and B<sub>4</sub>C + TiC mixtures using boron carbide powders obtained from the Zaporizhzhya Abrasive Plant and Donetsk Chemical Reagent Plant (Ukraine) was compared. The boron carbide powders differed in the ratio of B<sub>13</sub>C<sub>2</sub> and B<sub>4</sub>C phases and particle sizes. The reactively synthesized TiB<sub>2</sub>, CrB<sub>2</sub>, and CrTiB<sub>2</sub> boride phases positively influenced the SPS consolidation and properties of the boron carbide composites. The B<sub>4</sub>C–CrB<sub>2</sub> and B<sub>4</sub>C–TiB<sub>2</sub> ceramics subjected to Vickers hardness testing under a load of 98 N showed HV levels of 23–29 GPa and 26–28 GPa. The ceramics demonstrated brittle fracture according to the Half-penny model, with a fracture toughness of 3 MPa∙m<sup>1/2</sup> for B<sub>4</sub>C–CrB<sub>2</sub> and 4.4 MPa∙m<sup>1/2</sup> for B<sub>4</sub>C–TiB<sub>2</sub>. The 90 vol.% B<sub>4</sub>C–5.5 vol.% TiCrB<sub>2</sub>–4.5 vol.% C ceramics with ~33 GPa hardness and ~ 4 MPa∙m<sup>1/2</sup> fracture toughness were produced by reactive SPS from a mixture of B<sub>4</sub>C (Zaporizhzhya Abrasive Plant), 6.6 wt.% TiC, and 11 wt.% Cr<sub>2</sub>O<sub>3</sub>. The high strength of TiCrB<sub>2</sub> ceramics was attributed to the stress–strain state, where the matrix phase of boron carbide was subjected to compressive stresses. The high hardness and fracture toughness allow the B<sub>4</sub>C–TiCrB<sub>2</sub> composite to be classified as an ultrahard ceramic material.</p></div></div>\",\"PeriodicalId\":742,\"journal\":{\"name\":\"Powder Metallurgy and Metal Ceramics\",\"volume\":\"61 9-10\",\"pages\":\"522 - 540\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Powder Metallurgy and Metal Ceramics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11106-023-00342-z\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Metallurgy and Metal Ceramics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11106-023-00342-z","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了火花等离子烧结反应合成异相难熔超硬b4c基复合材料的工艺。为了制备异相B4C + TiB2 + CrB2陶瓷,研究了碳化硼与氧化铬、碳化硼与碳化钛之间的化学反应,形成碳化硼-二硼化铬和碳化硼-二硼化钛复合材料。比较了zzaporizzhhya磨料厂和乌克兰顿涅茨克化学试剂厂生产的碳化硼粉末对B4C + Cr2O3 + C和B4C + TiC混合物的反应烧结效果。碳化硼粉末在B13C2和B4C相的比例和粒度上存在差异。反应合成的TiB2、CrB2和CrTiB2硼化物相对复合材料的SPS固结和性能有积极影响。B4C-CrB2和B4C-TiB2陶瓷在98 N载荷下进行维氏硬度测试,HV值分别为23-29 GPa和26-28 GPa。根据半便士模型,陶瓷呈现脆性断裂,B4C-CrB2的断裂韧性为3 MPa∙m1/2, B4C-TiB2的断裂韧性为4.4 MPa∙m1/2。采用反应SPS法制备了B4C (zaporizzhya磨料厂)、6.6 wt.% TiC和11wt .% Cr2O3的混合物,制备了90 vol.% B4C - 5.5 vol.% TiCrB2-4.5 vol.% C、~33 GPa硬度和~ 4 MPa∙m1/2断裂韧性的陶瓷。TiCrB2陶瓷的高强度归因于应力应变状态,其中碳化硼的基体相受到压应力。高硬度和断裂韧性使B4C-TiCrB2复合材料被归类为超硬陶瓷材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reactive Synthesis of B4C–CrB2, B4C–TiB2, AND B4C–TiCrB2 Heterophase Ceramics by Spark Plasma Sintering

The reactive synthesis of heterophase refractory ultrahard B4C-based composites by spark plasma sintering (SPS) was examined. To produce heterophase B4C + TiB2 + CrB2 ceramics, the chemical reaction between boron carbide and chromium oxide and between boron carbide and titanium carbide resulting in boron carbide–chromium diboride and boron carbide–titanium diboride composites was previously studied. The reactive sintering of B4C + Cr2O3 + C and B4C + TiC mixtures using boron carbide powders obtained from the Zaporizhzhya Abrasive Plant and Donetsk Chemical Reagent Plant (Ukraine) was compared. The boron carbide powders differed in the ratio of B13C2 and B4C phases and particle sizes. The reactively synthesized TiB2, CrB2, and CrTiB2 boride phases positively influenced the SPS consolidation and properties of the boron carbide composites. The B4C–CrB2 and B4C–TiB2 ceramics subjected to Vickers hardness testing under a load of 98 N showed HV levels of 23–29 GPa and 26–28 GPa. The ceramics demonstrated brittle fracture according to the Half-penny model, with a fracture toughness of 3 MPa∙m1/2 for B4C–CrB2 and 4.4 MPa∙m1/2 for B4C–TiB2. The 90 vol.% B4C–5.5 vol.% TiCrB2–4.5 vol.% C ceramics with ~33 GPa hardness and ~ 4 MPa∙m1/2 fracture toughness were produced by reactive SPS from a mixture of B4C (Zaporizhzhya Abrasive Plant), 6.6 wt.% TiC, and 11 wt.% Cr2O3. The high strength of TiCrB2 ceramics was attributed to the stress–strain state, where the matrix phase of boron carbide was subjected to compressive stresses. The high hardness and fracture toughness allow the B4C–TiCrB2 composite to be classified as an ultrahard ceramic material.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Powder Metallurgy and Metal Ceramics
Powder Metallurgy and Metal Ceramics 工程技术-材料科学:硅酸盐
CiteScore
1.90
自引率
20.00%
发文量
43
审稿时长
6-12 weeks
期刊介绍: Powder Metallurgy and Metal Ceramics covers topics of the theory, manufacturing technology, and properties of powder; technology of forming processes; the technology of sintering, heat treatment, and thermo-chemical treatment; properties of sintered materials; and testing methods.
期刊最新文献
Properties of Powders Produced by Plasma-Arc Spheroidization of Current-Carrying Fe–Al Flux-Cored Wire Tribotechnical Properties of Copper-Based Antifriction Composites for High-Speed Friction Units of Printing Machines Influence of f–d Interaction on Tunnel Magnetoresistance and Magnetoimpedance in Island Fe/Gd2O3 Nanostructures Experimental Studies on the Effect of Destructive Reagents on Metal Structural Elements Structural Creep Sensitivity of ARB-Processed Al/SiC/Cu Bimetallic Composite Strip
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1