用准蒙特卡罗技术量化复合材料损伤的不确定性

IF 0.5 Q4 ENGINEERING, MECHANICAL Journal of Verification, Validation and Uncertainty Quantification Pub Date : 2021-11-03 DOI:10.1115/1.4052895
Emil Pitz, K. Pochiraju
{"title":"用准蒙特卡罗技术量化复合材料损伤的不确定性","authors":"Emil Pitz, K. Pochiraju","doi":"10.1115/1.4052895","DOIUrl":null,"url":null,"abstract":"\n Property variations in a structure strongly impact the macroscopic mechanical performance as regions with lower strength will be prone to damage initiation or acceleration. Consideration of the variability in material property is critical for high-resolution simulations of damage initiation and propagation. While the recent progressive damage analyses consider randomness in property fields, accurately quantifying the uncertainty in damage measures remains computationally expensive. Stochastic damage analyses require extensive sampling of random property fields and numerous replications of the underlying non-linear deterministic simulations. This paper demonstrates that a Quasi Monte Carlo (QMC) method, which uses a multi-dimensional low discrepancy Sobol sequence, is a computationally economical way to obtain the mean and standard deviations in cracks evolving in composites. An Extended Finite Element Method (XFEM) method with spatially random strength fields simulates the damage initiation and evolution in a model composite. We compared the number of simulations required for Monte Carlo (MC) and QMC techniques to measure the influence of input variability on the mean crack-length in an open-hole angle-ply tensile test. We conclude that the low discrepancy sampling and QMC technique converges substantially faster than traditional MC methods.","PeriodicalId":52254,"journal":{"name":"Journal of Verification, Validation and Uncertainty Quantification","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying Uncertainty of Damage in Composites Using a Quasi Monte Carlo Technique\",\"authors\":\"Emil Pitz, K. Pochiraju\",\"doi\":\"10.1115/1.4052895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Property variations in a structure strongly impact the macroscopic mechanical performance as regions with lower strength will be prone to damage initiation or acceleration. Consideration of the variability in material property is critical for high-resolution simulations of damage initiation and propagation. While the recent progressive damage analyses consider randomness in property fields, accurately quantifying the uncertainty in damage measures remains computationally expensive. Stochastic damage analyses require extensive sampling of random property fields and numerous replications of the underlying non-linear deterministic simulations. This paper demonstrates that a Quasi Monte Carlo (QMC) method, which uses a multi-dimensional low discrepancy Sobol sequence, is a computationally economical way to obtain the mean and standard deviations in cracks evolving in composites. An Extended Finite Element Method (XFEM) method with spatially random strength fields simulates the damage initiation and evolution in a model composite. We compared the number of simulations required for Monte Carlo (MC) and QMC techniques to measure the influence of input variability on the mean crack-length in an open-hole angle-ply tensile test. We conclude that the low discrepancy sampling and QMC technique converges substantially faster than traditional MC methods.\",\"PeriodicalId\":52254,\"journal\":{\"name\":\"Journal of Verification, Validation and Uncertainty Quantification\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Verification, Validation and Uncertainty Quantification\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4052895\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Verification, Validation and Uncertainty Quantification","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4052895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

结构中的性能变化强烈影响宏观机械性能,因为具有较低强度的区域将倾向于损伤引发或加速。考虑材料特性的可变性对于损伤萌生和传播的高分辨率模拟至关重要。虽然最近的渐进损伤分析考虑了特性场中的随机性,但准确量化损伤测量中的不确定性在计算上仍然很昂贵。随机损伤分析需要对随机特性场进行大量采样,并对潜在的非线性确定性模拟进行大量复制。本文证明,使用多维低差异Sobol序列的准蒙特卡罗(QMC)方法是一种计算经济的方法,可以获得复合材料裂纹演化的平均偏差和标准偏差。具有空间随机强度场的扩展有限元方法模拟了复合材料模型中的损伤萌生和演化。我们比较了蒙特卡罗(MC)和QMC技术所需的模拟次数,以测量开孔斜交层拉伸试验中输入可变性对平均裂纹长度的影响。我们得出的结论是,低差异采样和QMC技术的收敛速度大大快于传统的MC方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantifying Uncertainty of Damage in Composites Using a Quasi Monte Carlo Technique
Property variations in a structure strongly impact the macroscopic mechanical performance as regions with lower strength will be prone to damage initiation or acceleration. Consideration of the variability in material property is critical for high-resolution simulations of damage initiation and propagation. While the recent progressive damage analyses consider randomness in property fields, accurately quantifying the uncertainty in damage measures remains computationally expensive. Stochastic damage analyses require extensive sampling of random property fields and numerous replications of the underlying non-linear deterministic simulations. This paper demonstrates that a Quasi Monte Carlo (QMC) method, which uses a multi-dimensional low discrepancy Sobol sequence, is a computationally economical way to obtain the mean and standard deviations in cracks evolving in composites. An Extended Finite Element Method (XFEM) method with spatially random strength fields simulates the damage initiation and evolution in a model composite. We compared the number of simulations required for Monte Carlo (MC) and QMC techniques to measure the influence of input variability on the mean crack-length in an open-hole angle-ply tensile test. We conclude that the low discrepancy sampling and QMC technique converges substantially faster than traditional MC methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
12
期刊最新文献
Automatic Ground-Truth Image Labeling for Deep Neural Network Training and Evaluation Using Industrial Robotics and Motion Capture Using Responsive Feedback in Scaling a Gender Norms-Shifting Adolescent Sexual and Reproductive Health Intervention in the Democratic Republic of Congo. A Solution Verification Study For Urans Simulations of Flow Over a 5:1 Rectangular Cylinder Using Grid Convergence Index And Least Squares Procedures Strategies for Computational Fluid Dynamics Validation Experiments On the Verification of Finite Element Determinations of Stress Concentration Factors for Handbooks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1