等离子喷涂Cr2O3-25TiO2复合涂层的电化学腐蚀行为

IF 1 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Digest Journal of Nanomaterials and Biostructures Pub Date : 2023-07-02 DOI:10.15251/djnb.2023.182.751
Q. Song, F. Hao, Y. Zhang, Q. Li, J. Li
{"title":"等离子喷涂Cr2O3-25TiO2复合涂层的电化学腐蚀行为","authors":"Q. Song, F. Hao, Y. Zhang, Q. Li, J. Li","doi":"10.15251/djnb.2023.182.751","DOIUrl":null,"url":null,"abstract":"In this paper, Cr2O3-25TiO2 composite coatings were prepared on the surface of steel structure samples by atmospheric plasma spraying. The phase composition, microstructure, microhardness and long-term immersion corrosion behavior in 3.5 wt.% NaCl solution of Cr2O3-25TiO2 composite coatings were studied. The corrosion behavior of Cr2O3-25TiO2 composite coating was analyzed by potentiodynamic polarization and electrochemical impedance spectroscopy. The impedance data were fitted into an appropriate equivalent circuit to explain the electrochemical corrosion behavior of the coating at different stages. The results of scanning electron microscopy showed that the Cr2O3-25TiO2 composite coating was agglomerated, and the rhombohedral Cr2O3 powder was wrapped around the rhombohedral TiO2 powder. The coating melted completely without obvious defected. The XRD results showed that no phase transformation occurred in the Cr2O3-25TiO2 composite coating. The Cr2O3-25TiO2 coatings showed high corrosion resistance and good passivation behavior in the initial stage of corrosion. The coating itself did not corrode. With the extension of corrosion time, the corrosive medium had passed through the pores between the coatings, resulting in the contact between the corrosive medium and the matrix interface, resulting in the matrix corrosion damage. Corrosion products would deposit on the surface of the coating, blocking the pores between the coatings, and the corrosion rate would be reduced.","PeriodicalId":11233,"journal":{"name":"Digest Journal of Nanomaterials and Biostructures","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical corrosion behavior of plasma sprayed Cr2O3-25TiO2 composite coatings\",\"authors\":\"Q. Song, F. Hao, Y. Zhang, Q. Li, J. Li\",\"doi\":\"10.15251/djnb.2023.182.751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, Cr2O3-25TiO2 composite coatings were prepared on the surface of steel structure samples by atmospheric plasma spraying. The phase composition, microstructure, microhardness and long-term immersion corrosion behavior in 3.5 wt.% NaCl solution of Cr2O3-25TiO2 composite coatings were studied. The corrosion behavior of Cr2O3-25TiO2 composite coating was analyzed by potentiodynamic polarization and electrochemical impedance spectroscopy. The impedance data were fitted into an appropriate equivalent circuit to explain the electrochemical corrosion behavior of the coating at different stages. The results of scanning electron microscopy showed that the Cr2O3-25TiO2 composite coating was agglomerated, and the rhombohedral Cr2O3 powder was wrapped around the rhombohedral TiO2 powder. The coating melted completely without obvious defected. The XRD results showed that no phase transformation occurred in the Cr2O3-25TiO2 composite coating. The Cr2O3-25TiO2 coatings showed high corrosion resistance and good passivation behavior in the initial stage of corrosion. The coating itself did not corrode. With the extension of corrosion time, the corrosive medium had passed through the pores between the coatings, resulting in the contact between the corrosive medium and the matrix interface, resulting in the matrix corrosion damage. Corrosion products would deposit on the surface of the coating, blocking the pores between the coatings, and the corrosion rate would be reduced.\",\"PeriodicalId\":11233,\"journal\":{\"name\":\"Digest Journal of Nanomaterials and Biostructures\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digest Journal of Nanomaterials and Biostructures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.15251/djnb.2023.182.751\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digest Journal of Nanomaterials and Biostructures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.15251/djnb.2023.182.751","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文采用常压等离子喷涂技术在钢结构样品表面制备了Cr2O3-25TiO2复合涂层。研究了Cr2O3-25TiO2复合镀层的相组成、显微组织、显微硬度及在3.5 wt.% NaCl溶液中的长期浸渍腐蚀行为。采用动电位极化和电化学阻抗谱分析了Cr2O3-25TiO2复合涂层的腐蚀行为。将阻抗数据拟合到适当的等效电路中,以解释涂层在不同阶段的电化学腐蚀行为。扫描电镜结果显示,Cr2O3- 25tio2复合涂层呈团聚状,菱面体Cr2O3粉末包裹在菱面体TiO2粉末周围。涂层完全熔化,无明显缺陷。XRD结果表明,Cr2O3-25TiO2复合涂层未发生相变。Cr2O3-25TiO2涂层在腐蚀初期表现出较高的耐蚀性和良好的钝化行为。涂层本身没有腐蚀。随着腐蚀时间的延长,腐蚀介质已经穿过涂层之间的孔隙,导致腐蚀介质与基体界面接触,造成基体腐蚀损伤。腐蚀产物会沉积在涂层表面,堵塞涂层之间的孔隙,降低腐蚀速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electrochemical corrosion behavior of plasma sprayed Cr2O3-25TiO2 composite coatings
In this paper, Cr2O3-25TiO2 composite coatings were prepared on the surface of steel structure samples by atmospheric plasma spraying. The phase composition, microstructure, microhardness and long-term immersion corrosion behavior in 3.5 wt.% NaCl solution of Cr2O3-25TiO2 composite coatings were studied. The corrosion behavior of Cr2O3-25TiO2 composite coating was analyzed by potentiodynamic polarization and electrochemical impedance spectroscopy. The impedance data were fitted into an appropriate equivalent circuit to explain the electrochemical corrosion behavior of the coating at different stages. The results of scanning electron microscopy showed that the Cr2O3-25TiO2 composite coating was agglomerated, and the rhombohedral Cr2O3 powder was wrapped around the rhombohedral TiO2 powder. The coating melted completely without obvious defected. The XRD results showed that no phase transformation occurred in the Cr2O3-25TiO2 composite coating. The Cr2O3-25TiO2 coatings showed high corrosion resistance and good passivation behavior in the initial stage of corrosion. The coating itself did not corrode. With the extension of corrosion time, the corrosive medium had passed through the pores between the coatings, resulting in the contact between the corrosive medium and the matrix interface, resulting in the matrix corrosion damage. Corrosion products would deposit on the surface of the coating, blocking the pores between the coatings, and the corrosion rate would be reduced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Digest Journal of Nanomaterials and Biostructures
Digest Journal of Nanomaterials and Biostructures 工程技术-材料科学:综合
CiteScore
1.50
自引率
22.20%
发文量
116
审稿时长
4.3 months
期刊介绍: Under the aegis of the Academy of Romanian Scientists Edited by: -Virtual Institute of Physics operated by Virtual Company of Physics.
期刊最新文献
Investigation of crystal structural and magnetic properties of titanium doped Pr0.67Ba0.33MnO3 perovskite manganites Preparation and properties of PTFE@TiO2/epoxy superhydrophobic coating Room temperature detection of sulfur dioxide using functionalized carbon nanotubes Characterizations of sprayed TiO2 and Cu doped TiO2 thin films prepared by spray pyrolysis method Synthesis and characterization of Fe-substituting BaO nanoparticles by sol-gel method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1