Qingying Shu, Rebecca Killick, A. Leeson, C. Nemeth, X. Fettweis, A. Hogg, David Leslie
{"title":"利用Sentinel-1 SAR数据表征格陵兰东北部冰盖表面","authors":"Qingying Shu, Rebecca Killick, A. Leeson, C. Nemeth, X. Fettweis, A. Hogg, David Leslie","doi":"10.1017/jog.2023.64","DOIUrl":null,"url":null,"abstract":"\n Over half of the recent mass loss from the Greenland ice sheet, and its associated contribution to global sea level rise, can be attributed to increased surface meltwater runoff, with the remainder a result of dynamical processes such as calving and ice discharge. It is therefore important to quantify the distribution of melting on the ice sheet if we are to adequately understand past ice sheet change and make predictions for the future. In this article, we present a novel semi-empirical approach for characterising ice sheet surface conditions using high-resolution synthetic aperture radar (SAR) backscatter data from the Sentinel-1 satellite. We apply a state-space model to nine sites within North-East Greenland to identify changes in SAR backscatter, and we attribute these to different surface types with reference to optical satellite imagery and meteorological data. A set of decision-making rules for labelling ice sheet melting states are determined based on this analysis and subsequently applied to previously unseen sites. We show that our method performs well in (1) recognising some of the ice sheet surface types such as snow and dark ice and (2) determining whether the surface is melting or not melting. Sentinel-1 SAR data are of high spatial resolution; thus, in developing a method to identify the state of the surface from these data, we improve our capability to understand the variation of ice sheet melting across time and space.","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Characterising the ice sheet surface in Northeast Greenland using Sentinel-1 SAR data\",\"authors\":\"Qingying Shu, Rebecca Killick, A. Leeson, C. Nemeth, X. Fettweis, A. Hogg, David Leslie\",\"doi\":\"10.1017/jog.2023.64\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Over half of the recent mass loss from the Greenland ice sheet, and its associated contribution to global sea level rise, can be attributed to increased surface meltwater runoff, with the remainder a result of dynamical processes such as calving and ice discharge. It is therefore important to quantify the distribution of melting on the ice sheet if we are to adequately understand past ice sheet change and make predictions for the future. In this article, we present a novel semi-empirical approach for characterising ice sheet surface conditions using high-resolution synthetic aperture radar (SAR) backscatter data from the Sentinel-1 satellite. We apply a state-space model to nine sites within North-East Greenland to identify changes in SAR backscatter, and we attribute these to different surface types with reference to optical satellite imagery and meteorological data. A set of decision-making rules for labelling ice sheet melting states are determined based on this analysis and subsequently applied to previously unseen sites. We show that our method performs well in (1) recognising some of the ice sheet surface types such as snow and dark ice and (2) determining whether the surface is melting or not melting. Sentinel-1 SAR data are of high spatial resolution; thus, in developing a method to identify the state of the surface from these data, we improve our capability to understand the variation of ice sheet melting across time and space.\",\"PeriodicalId\":15981,\"journal\":{\"name\":\"Journal of Glaciology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Glaciology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1017/jog.2023.64\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Glaciology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/jog.2023.64","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Characterising the ice sheet surface in Northeast Greenland using Sentinel-1 SAR data
Over half of the recent mass loss from the Greenland ice sheet, and its associated contribution to global sea level rise, can be attributed to increased surface meltwater runoff, with the remainder a result of dynamical processes such as calving and ice discharge. It is therefore important to quantify the distribution of melting on the ice sheet if we are to adequately understand past ice sheet change and make predictions for the future. In this article, we present a novel semi-empirical approach for characterising ice sheet surface conditions using high-resolution synthetic aperture radar (SAR) backscatter data from the Sentinel-1 satellite. We apply a state-space model to nine sites within North-East Greenland to identify changes in SAR backscatter, and we attribute these to different surface types with reference to optical satellite imagery and meteorological data. A set of decision-making rules for labelling ice sheet melting states are determined based on this analysis and subsequently applied to previously unseen sites. We show that our method performs well in (1) recognising some of the ice sheet surface types such as snow and dark ice and (2) determining whether the surface is melting or not melting. Sentinel-1 SAR data are of high spatial resolution; thus, in developing a method to identify the state of the surface from these data, we improve our capability to understand the variation of ice sheet melting across time and space.
期刊介绍:
Journal of Glaciology publishes original scientific articles and letters in any aspect of glaciology- the study of ice. Studies of natural, artificial, and extraterrestrial ice and snow, as well as interactions between ice, snow and the atmospheric, oceanic and subglacial environment are all eligible. They may be based on field work, remote sensing, laboratory investigations, theoretical analysis or numerical modelling, or may report on newly developed glaciological instruments. Subjects covered recently in the Journal have included palaeoclimatology and the chemistry of the atmosphere as revealed in ice cores; theoretical and applied physics and chemistry of ice; the dynamics of glaciers and ice sheets, and changes in their extent and mass under climatic forcing; glacier energy balances at all scales; glacial landforms, and glaciers as geomorphic agents; snow science in all its aspects; ice as a host for surface and subglacial ecosystems; sea ice, icebergs and lake ice; and avalanche dynamics and other glacial hazards to human activity. Studies of permafrost and of ice in the Earth’s atmosphere are also within the domain of the Journal, as are interdisciplinary applications to engineering, biological, and social sciences, and studies in the history of glaciology.