H. Altinova, Sebastian Hammes, Moniek Palm, Pascal Achenbach, Jose L. Gerardo-Nava, R. Deumens, T. Führmann, S. V. van Neerven, E. Hermans, J. Weis, G. Brook
{"title":"在脊髓损伤的实验模型中,密集的纤维粘连性瘢痕和较差的血管成熟阻碍了植入的胶原支架的整合","authors":"H. Altinova, Sebastian Hammes, Moniek Palm, Pascal Achenbach, Jose L. Gerardo-Nava, R. Deumens, T. Führmann, S. V. van Neerven, E. Hermans, J. Weis, G. Brook","doi":"10.1088/1748-605X/ab5e52","DOIUrl":null,"url":null,"abstract":"Severe spinal cord injury (SCI) results in permanent functional deficits, which despite pre-clinical advances, remain untreatable. Combinational approaches, including the implantation of bioengineered scaffolds are likely to promote significant tissue repair. However, this critically depends on the extent to which host tissue can integrate with the implant. In the present paper, blood vessel formation and maturation were studied within and around implanted micro-structured type-I collagen scaffolds at 10 weeks post implantation in adult rat mid-cervical spinal cord lateral funiculotomy injuries. Morphometric analysis revealed that blood vessel density within the scaffold was similar to that of the lateral white matter tracts that the implant replaced. However, immunohistochemistry for zonula occludens−1 (ZO-1) and endothelial barrier antigen revealed that scaffold microvessels remained largely immature, suggesting poor blood-spinal cord barrier (BSB) reformation. Furthermore, a band of intense ZO-1-immunoreactive fibroblast-like cells isolated the implant. Spinal cord vessels outside the ZO-1-band demonstrated BSB-formation, while vessels within the scaffold generally did not. The formation of a double-layered fibrotic and astroglial scar around the collagen scaffold might explain the relatively poor implant-host integration and suggests a mechanism for failed microvessel maturation. Targeted strategies that improve implant-host integration for such biomaterials will be vital for future tissue engineering and regenerative medicine approaches for traumatic SCI.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2019-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1088/1748-605X/ab5e52","citationCount":"9","resultStr":"{\"title\":\"Dense fibroadhesive scarring and poor blood vessel-maturation hamper the integration of implanted collagen scaffolds in an experimental model of spinal cord injury\",\"authors\":\"H. Altinova, Sebastian Hammes, Moniek Palm, Pascal Achenbach, Jose L. Gerardo-Nava, R. Deumens, T. Führmann, S. V. van Neerven, E. Hermans, J. Weis, G. Brook\",\"doi\":\"10.1088/1748-605X/ab5e52\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Severe spinal cord injury (SCI) results in permanent functional deficits, which despite pre-clinical advances, remain untreatable. Combinational approaches, including the implantation of bioengineered scaffolds are likely to promote significant tissue repair. However, this critically depends on the extent to which host tissue can integrate with the implant. In the present paper, blood vessel formation and maturation were studied within and around implanted micro-structured type-I collagen scaffolds at 10 weeks post implantation in adult rat mid-cervical spinal cord lateral funiculotomy injuries. Morphometric analysis revealed that blood vessel density within the scaffold was similar to that of the lateral white matter tracts that the implant replaced. However, immunohistochemistry for zonula occludens−1 (ZO-1) and endothelial barrier antigen revealed that scaffold microvessels remained largely immature, suggesting poor blood-spinal cord barrier (BSB) reformation. Furthermore, a band of intense ZO-1-immunoreactive fibroblast-like cells isolated the implant. Spinal cord vessels outside the ZO-1-band demonstrated BSB-formation, while vessels within the scaffold generally did not. The formation of a double-layered fibrotic and astroglial scar around the collagen scaffold might explain the relatively poor implant-host integration and suggests a mechanism for failed microvessel maturation. Targeted strategies that improve implant-host integration for such biomaterials will be vital for future tissue engineering and regenerative medicine approaches for traumatic SCI.\",\"PeriodicalId\":9016,\"journal\":{\"name\":\"Biomedical materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2019-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1088/1748-605X/ab5e52\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-605X/ab5e52\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1748-605X/ab5e52","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Dense fibroadhesive scarring and poor blood vessel-maturation hamper the integration of implanted collagen scaffolds in an experimental model of spinal cord injury
Severe spinal cord injury (SCI) results in permanent functional deficits, which despite pre-clinical advances, remain untreatable. Combinational approaches, including the implantation of bioengineered scaffolds are likely to promote significant tissue repair. However, this critically depends on the extent to which host tissue can integrate with the implant. In the present paper, blood vessel formation and maturation were studied within and around implanted micro-structured type-I collagen scaffolds at 10 weeks post implantation in adult rat mid-cervical spinal cord lateral funiculotomy injuries. Morphometric analysis revealed that blood vessel density within the scaffold was similar to that of the lateral white matter tracts that the implant replaced. However, immunohistochemistry for zonula occludens−1 (ZO-1) and endothelial barrier antigen revealed that scaffold microvessels remained largely immature, suggesting poor blood-spinal cord barrier (BSB) reformation. Furthermore, a band of intense ZO-1-immunoreactive fibroblast-like cells isolated the implant. Spinal cord vessels outside the ZO-1-band demonstrated BSB-formation, while vessels within the scaffold generally did not. The formation of a double-layered fibrotic and astroglial scar around the collagen scaffold might explain the relatively poor implant-host integration and suggests a mechanism for failed microvessel maturation. Targeted strategies that improve implant-host integration for such biomaterials will be vital for future tissue engineering and regenerative medicine approaches for traumatic SCI.
期刊介绍:
The goal of the journal is to publish original research findings and critical reviews that contribute to our knowledge about the composition, properties, and performance of materials for all applications relevant to human healthcare.
Typical areas of interest include (but are not limited to):
-Synthesis/characterization of biomedical materials-
Nature-inspired synthesis/biomineralization of biomedical materials-
In vitro/in vivo performance of biomedical materials-
Biofabrication technologies/applications: 3D bioprinting, bioink development, bioassembly & biopatterning-
Microfluidic systems (including disease models): fabrication, testing & translational applications-
Tissue engineering/regenerative medicine-
Interaction of molecules/cells with materials-
Effects of biomaterials on stem cell behaviour-
Growth factors/genes/cells incorporated into biomedical materials-
Biophysical cues/biocompatibility pathways in biomedical materials performance-
Clinical applications of biomedical materials for cell therapies in disease (cancer etc)-
Nanomedicine, nanotoxicology and nanopathology-
Pharmacokinetic considerations in drug delivery systems-
Risks of contrast media in imaging systems-
Biosafety aspects of gene delivery agents-
Preclinical and clinical performance of implantable biomedical materials-
Translational and regulatory matters