{"title":"金在铜-乙二胺-硫代硫酸盐体系中溶解的电化学分析","authors":"P. Xiang, Qiong Liu, C. Deng, G. Ye","doi":"10.1515/gps-2022-8133","DOIUrl":null,"url":null,"abstract":"Abstract Thiosulfate gold leaching is a green gold extraction technology. Here, the effects of thiosulfate, copper ion, ethylenediamine, and polarization voltage on the dissolution of gold in this system were investigated by an electrochemical method. The results showed that the addition of thiosulfate promoted the dissolution of gold, but increasing the thiosulfate concentration had a little additional effect. The addition of ethylenediamine also increased the dissolution of gold, but the dissolution resistance of gold increased after adding ethylenediamine. The dissolution of gold increased, the diffusion resistance increased, and the dispersion effect increased upon increasing the copper ion concentration. The copper–ethylenediamine–thiosulfate system did not display passivation (or only weak passivation) upon increasing the polarization voltage, which indicates that the system was relatively stable. The influence of three factors on the dissolution of gold followed the order thiosulfate > copper ion > ethylenediamine.","PeriodicalId":12758,"journal":{"name":"Green Processing and Synthesis","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical analysis of the dissolution of gold in a copper–ethylenediamine–thiosulfate system\",\"authors\":\"P. Xiang, Qiong Liu, C. Deng, G. Ye\",\"doi\":\"10.1515/gps-2022-8133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Thiosulfate gold leaching is a green gold extraction technology. Here, the effects of thiosulfate, copper ion, ethylenediamine, and polarization voltage on the dissolution of gold in this system were investigated by an electrochemical method. The results showed that the addition of thiosulfate promoted the dissolution of gold, but increasing the thiosulfate concentration had a little additional effect. The addition of ethylenediamine also increased the dissolution of gold, but the dissolution resistance of gold increased after adding ethylenediamine. The dissolution of gold increased, the diffusion resistance increased, and the dispersion effect increased upon increasing the copper ion concentration. The copper–ethylenediamine–thiosulfate system did not display passivation (or only weak passivation) upon increasing the polarization voltage, which indicates that the system was relatively stable. The influence of three factors on the dissolution of gold followed the order thiosulfate > copper ion > ethylenediamine.\",\"PeriodicalId\":12758,\"journal\":{\"name\":\"Green Processing and Synthesis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Processing and Synthesis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/gps-2022-8133\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Processing and Synthesis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/gps-2022-8133","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Electrochemical analysis of the dissolution of gold in a copper–ethylenediamine–thiosulfate system
Abstract Thiosulfate gold leaching is a green gold extraction technology. Here, the effects of thiosulfate, copper ion, ethylenediamine, and polarization voltage on the dissolution of gold in this system were investigated by an electrochemical method. The results showed that the addition of thiosulfate promoted the dissolution of gold, but increasing the thiosulfate concentration had a little additional effect. The addition of ethylenediamine also increased the dissolution of gold, but the dissolution resistance of gold increased after adding ethylenediamine. The dissolution of gold increased, the diffusion resistance increased, and the dispersion effect increased upon increasing the copper ion concentration. The copper–ethylenediamine–thiosulfate system did not display passivation (or only weak passivation) upon increasing the polarization voltage, which indicates that the system was relatively stable. The influence of three factors on the dissolution of gold followed the order thiosulfate > copper ion > ethylenediamine.
期刊介绍:
Green Processing and Synthesis is a bimonthly, peer-reviewed journal that provides up-to-date research both on fundamental as well as applied aspects of innovative green process development and chemical synthesis, giving an appropriate share to industrial views. The contributions are cutting edge, high-impact, authoritative, and provide both pros and cons of potential technologies. Green Processing and Synthesis provides a platform for scientists and engineers, especially chemists and chemical engineers, but is also open for interdisciplinary research from other areas such as physics, materials science, or catalysis.