基于无线LPWAN和SD-WAN技术的应急通信系统:一种混合方法

Signals Pub Date : 2023-04-30 DOI:10.3390/signals4020017
Vasileios Cheimaras, Nikolaos Peladarinos, Nikolaos Monios, Spyridon Daousis, Spyridon Papagiakoumos, P. Papageorgas, D. Piromalis
{"title":"基于无线LPWAN和SD-WAN技术的应急通信系统:一种混合方法","authors":"Vasileios Cheimaras, Nikolaos Peladarinos, Nikolaos Monios, Spyridon Daousis, Spyridon Papagiakoumos, P. Papageorgas, D. Piromalis","doi":"10.3390/signals4020017","DOIUrl":null,"url":null,"abstract":"Emergency Communication Systems (ECS) are network-based systems that may enable people to exchange information during crises and physical disasters when basic communication options have collapsed. They may be used to restore communication in off-grid areas or even when normal telecommunication networks have failed. These systems may use technologies such as Low-Power Wide-Area(LPWAN) and Software-Defined Wide Area Networks (SD-WAN), which can be specialized as software applications and Internet of Things (IoT) platforms. In this article, we present a comprehensive discussion of the existing ECS use cases and current research directions regarding the use of unconventional and hybrid methods for establishing communication between a specific site and the outside world. The ECS system proposed and simulated in this article consists of an autonomous wireless 4G/LTE base station and a LoRa network utilizing a hybrid IoT communication platform combining LPWAN and SD-WAN technologies. The LoRa-based wireless network was simulated using Network Simulator 3 (NS3), referring basically to firm and sufficient data transfer between an appropriate gateway and LP-WAN sensor nodes to provide trustworthy communications. The proposed scheme provided efficient data transfer posing low data losses by optimizing the installation of the gateway within the premises, while the SD-WAN scheme that was simulated using the MATLAB simulator and LTE Toolbox in conjunction with an ADALM PLUTO SDR device proved to be an outstanding alternative communication solution as well. Its performance was measured after recombining all received data blocks, leading to a beneficial proposal to researchers and practitioners regarding the benefits of using an on-premises IoT communication platform.","PeriodicalId":93815,"journal":{"name":"Signals","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emergency Communication System Based on Wireless LPWAN and SD-WAN Technologies: A Hybrid Approach\",\"authors\":\"Vasileios Cheimaras, Nikolaos Peladarinos, Nikolaos Monios, Spyridon Daousis, Spyridon Papagiakoumos, P. Papageorgas, D. Piromalis\",\"doi\":\"10.3390/signals4020017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emergency Communication Systems (ECS) are network-based systems that may enable people to exchange information during crises and physical disasters when basic communication options have collapsed. They may be used to restore communication in off-grid areas or even when normal telecommunication networks have failed. These systems may use technologies such as Low-Power Wide-Area(LPWAN) and Software-Defined Wide Area Networks (SD-WAN), which can be specialized as software applications and Internet of Things (IoT) platforms. In this article, we present a comprehensive discussion of the existing ECS use cases and current research directions regarding the use of unconventional and hybrid methods for establishing communication between a specific site and the outside world. The ECS system proposed and simulated in this article consists of an autonomous wireless 4G/LTE base station and a LoRa network utilizing a hybrid IoT communication platform combining LPWAN and SD-WAN technologies. The LoRa-based wireless network was simulated using Network Simulator 3 (NS3), referring basically to firm and sufficient data transfer between an appropriate gateway and LP-WAN sensor nodes to provide trustworthy communications. The proposed scheme provided efficient data transfer posing low data losses by optimizing the installation of the gateway within the premises, while the SD-WAN scheme that was simulated using the MATLAB simulator and LTE Toolbox in conjunction with an ADALM PLUTO SDR device proved to be an outstanding alternative communication solution as well. Its performance was measured after recombining all received data blocks, leading to a beneficial proposal to researchers and practitioners regarding the benefits of using an on-premises IoT communication platform.\",\"PeriodicalId\":93815,\"journal\":{\"name\":\"Signals\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/signals4020017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/signals4020017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

紧急通信系统(ECS)是一种基于网络的系统,当基本通信选项崩溃时,人们可以在危机和物理灾害期间交换信息。它们可以用于恢复离网区域的通信,甚至在正常电信网络出现故障时。这些系统可以使用低功耗广域网(LPWAN)和软件定义广域网(SD-WAN)等技术,这些技术可以专门用作软件应用程序和物联网(IoT)平台。在这篇文章中,我们全面讨论了现有的ECS用例和当前的研究方向,即使用非常规和混合方法来建立特定站点与外部世界之间的通信。本文提出并模拟的ECS系统由一个自主无线4G/LTE基站和一个LoRa网络组成,该网络利用了LPWAN和SD-WAN技术相结合的混合物联网通信平台。使用网络模拟器3(NS3)模拟了基于LoRa的无线网络,基本上是指在适当的网关和LP-WAN传感器节点之间进行牢固和充分的数据传输,以提供可靠的通信。所提出的方案通过优化房屋内网关的安装,提供了高效的数据传输,降低了数据损失,而使用MATLAB模拟器和LTE工具箱与ADALM PLUTO SDR设备一起模拟的SD-WAN方案也被证明是一种出色的替代通信解决方案。它的性能是在重新组合所有接收到的数据块后进行测量的,这为研究人员和从业者提供了一个关于使用本地物联网通信平台的好处的有益建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Emergency Communication System Based on Wireless LPWAN and SD-WAN Technologies: A Hybrid Approach
Emergency Communication Systems (ECS) are network-based systems that may enable people to exchange information during crises and physical disasters when basic communication options have collapsed. They may be used to restore communication in off-grid areas or even when normal telecommunication networks have failed. These systems may use technologies such as Low-Power Wide-Area(LPWAN) and Software-Defined Wide Area Networks (SD-WAN), which can be specialized as software applications and Internet of Things (IoT) platforms. In this article, we present a comprehensive discussion of the existing ECS use cases and current research directions regarding the use of unconventional and hybrid methods for establishing communication between a specific site and the outside world. The ECS system proposed and simulated in this article consists of an autonomous wireless 4G/LTE base station and a LoRa network utilizing a hybrid IoT communication platform combining LPWAN and SD-WAN technologies. The LoRa-based wireless network was simulated using Network Simulator 3 (NS3), referring basically to firm and sufficient data transfer between an appropriate gateway and LP-WAN sensor nodes to provide trustworthy communications. The proposed scheme provided efficient data transfer posing low data losses by optimizing the installation of the gateway within the premises, while the SD-WAN scheme that was simulated using the MATLAB simulator and LTE Toolbox in conjunction with an ADALM PLUTO SDR device proved to be an outstanding alternative communication solution as well. Its performance was measured after recombining all received data blocks, leading to a beneficial proposal to researchers and practitioners regarding the benefits of using an on-premises IoT communication platform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
审稿时长
11 weeks
期刊最新文献
Detection of Movement and Lead-Popping Artifacts in Polysomnography EEG Data. Development of an Integrated System of sEMG Signal Acquisition, Processing, and Analysis with AI Techniques Correction: Martin et al. ApeTI: A Thermal Image Dataset for Face and Nose Segmentation with Apes. Signals 2024, 5, 147–164 On the Impulse Response of Singular Discrete LTI Systems and Three Fourier Transform Pairs Noncooperative Spectrum Sensing Strategy Based on Recurrence Quantification Analysis in the Context of the Cognitive Radio
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1