{"title":"聚合二元数据的二项式逻辑建模:在学龄前儿童字母表知识中的应用","authors":"Seongah Im, B. DeBaryshe","doi":"10.1504/ijqre.2020.10028312","DOIUrl":null,"url":null,"abstract":"This study investigated the use of different binomial logistic models as alternatives to the normal model when analysing non-normal aggregate outcomes that are sums of correlated binary responses. The outcome variables provided in the two illustrative examples were preschoolers' uppercase and lowercase letter naming knowledge with different shapes of non-normal distributions. The binomial, beta-binomial, and mixed binomial models with logit links were examined and compared to each other and to the normal linear model. Results were consistent in both examples. Among the models compared, the beta-binomial and mixed binomial models with overdispersion parameters captured interdependence among correlated binary responses. In addition, the mixed binomial model further explained remaining overdispersion and best fitted the data. Implications including advocating for the use of the binomial models with overdispersion parameters for clustered data were further discussed.","PeriodicalId":90868,"journal":{"name":"International journal of quantitative research in education","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Binomial logistic modelling for aggregate binary data: application to preschoolers' alphabet knowledge\",\"authors\":\"Seongah Im, B. DeBaryshe\",\"doi\":\"10.1504/ijqre.2020.10028312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigated the use of different binomial logistic models as alternatives to the normal model when analysing non-normal aggregate outcomes that are sums of correlated binary responses. The outcome variables provided in the two illustrative examples were preschoolers' uppercase and lowercase letter naming knowledge with different shapes of non-normal distributions. The binomial, beta-binomial, and mixed binomial models with logit links were examined and compared to each other and to the normal linear model. Results were consistent in both examples. Among the models compared, the beta-binomial and mixed binomial models with overdispersion parameters captured interdependence among correlated binary responses. In addition, the mixed binomial model further explained remaining overdispersion and best fitted the data. Implications including advocating for the use of the binomial models with overdispersion parameters for clustered data were further discussed.\",\"PeriodicalId\":90868,\"journal\":{\"name\":\"International journal of quantitative research in education\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of quantitative research in education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijqre.2020.10028312\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of quantitative research in education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijqre.2020.10028312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Binomial logistic modelling for aggregate binary data: application to preschoolers' alphabet knowledge
This study investigated the use of different binomial logistic models as alternatives to the normal model when analysing non-normal aggregate outcomes that are sums of correlated binary responses. The outcome variables provided in the two illustrative examples were preschoolers' uppercase and lowercase letter naming knowledge with different shapes of non-normal distributions. The binomial, beta-binomial, and mixed binomial models with logit links were examined and compared to each other and to the normal linear model. Results were consistent in both examples. Among the models compared, the beta-binomial and mixed binomial models with overdispersion parameters captured interdependence among correlated binary responses. In addition, the mixed binomial model further explained remaining overdispersion and best fitted the data. Implications including advocating for the use of the binomial models with overdispersion parameters for clustered data were further discussed.