Shaowei Chen, P. Liu, Zhenchun Li, Tianwei Li, Yunwu Yu, Yuanyuan Bi, Feihong Li, Jun Mao
{"title":"基于贻贝仿生技术的“三层夹心”复合疏松纳滤膜的制备与性能","authors":"Shaowei Chen, P. Liu, Zhenchun Li, Tianwei Li, Yunwu Yu, Yuanyuan Bi, Feihong Li, Jun Mao","doi":"10.1515/polyeng-2023-0109","DOIUrl":null,"url":null,"abstract":"Abstract In this study, a novel “three-layer sandwich” composite loose nanofiltration (NF) membrane structure by mussel bionic technology was constructed on a porous polyvinylidene fluoride (PVDF) substrate membrane, with a mussel bionic coating as the middle layer and the complex network of polyphenols and metal ions as the top layer. The new composite NF membrane had comprehensive properties such as excellent separation performance, good hydrophilicity and strong antifouling ability. The experimental results showed that the combination of tannic acid (TA) and iron ion (Fe3+) could significantly improve the comprehensive performance of the composite NF membrane, with water flux of more than 3000 L/(m2∙h), and the retention rate of dyes and bovine serum protein (BSA) exceeded 90 %, and contact angle was up to 30°. The combination of TA and copper ion (Cu2+) can greatly enhance the antifouling performance and interception ability of methylene blue. The complexation activity of metal ions and polyphenols was related to the oxidation of metal ions. The PVDF/DA-PEI/TA-M+ composite structure scheme of “three-layer sandwich” NF membrane provides a new idea and future development direction for the development of novel NF membranes with excellent comprehensive performance.","PeriodicalId":16881,"journal":{"name":"Journal of Polymer Engineering","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation and performance of “three-layer sandwich” composite loose nanofiltration membrane based on mussel bionic technology\",\"authors\":\"Shaowei Chen, P. Liu, Zhenchun Li, Tianwei Li, Yunwu Yu, Yuanyuan Bi, Feihong Li, Jun Mao\",\"doi\":\"10.1515/polyeng-2023-0109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this study, a novel “three-layer sandwich” composite loose nanofiltration (NF) membrane structure by mussel bionic technology was constructed on a porous polyvinylidene fluoride (PVDF) substrate membrane, with a mussel bionic coating as the middle layer and the complex network of polyphenols and metal ions as the top layer. The new composite NF membrane had comprehensive properties such as excellent separation performance, good hydrophilicity and strong antifouling ability. The experimental results showed that the combination of tannic acid (TA) and iron ion (Fe3+) could significantly improve the comprehensive performance of the composite NF membrane, with water flux of more than 3000 L/(m2∙h), and the retention rate of dyes and bovine serum protein (BSA) exceeded 90 %, and contact angle was up to 30°. The combination of TA and copper ion (Cu2+) can greatly enhance the antifouling performance and interception ability of methylene blue. The complexation activity of metal ions and polyphenols was related to the oxidation of metal ions. The PVDF/DA-PEI/TA-M+ composite structure scheme of “three-layer sandwich” NF membrane provides a new idea and future development direction for the development of novel NF membranes with excellent comprehensive performance.\",\"PeriodicalId\":16881,\"journal\":{\"name\":\"Journal of Polymer Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymer Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/polyeng-2023-0109\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/polyeng-2023-0109","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Preparation and performance of “three-layer sandwich” composite loose nanofiltration membrane based on mussel bionic technology
Abstract In this study, a novel “three-layer sandwich” composite loose nanofiltration (NF) membrane structure by mussel bionic technology was constructed on a porous polyvinylidene fluoride (PVDF) substrate membrane, with a mussel bionic coating as the middle layer and the complex network of polyphenols and metal ions as the top layer. The new composite NF membrane had comprehensive properties such as excellent separation performance, good hydrophilicity and strong antifouling ability. The experimental results showed that the combination of tannic acid (TA) and iron ion (Fe3+) could significantly improve the comprehensive performance of the composite NF membrane, with water flux of more than 3000 L/(m2∙h), and the retention rate of dyes and bovine serum protein (BSA) exceeded 90 %, and contact angle was up to 30°. The combination of TA and copper ion (Cu2+) can greatly enhance the antifouling performance and interception ability of methylene blue. The complexation activity of metal ions and polyphenols was related to the oxidation of metal ions. The PVDF/DA-PEI/TA-M+ composite structure scheme of “three-layer sandwich” NF membrane provides a new idea and future development direction for the development of novel NF membranes with excellent comprehensive performance.
期刊介绍:
Journal of Polymer Engineering publishes reviews, original basic and applied research contributions as well as recent technological developments in polymer engineering. Polymer engineering is a strongly interdisciplinary field and papers published by the journal may span areas such as polymer physics, polymer processing and engineering of polymer-based materials and their applications. The editors and the publisher are committed to high quality standards and rapid handling of the peer review and publication processes.