阳离子纳米载体提高盐酸万古霉素的口服生物利用度:优化,体外,离体和体内研究

IF 2.3 Q3 PHARMACOLOGY & PHARMACY Scientia Pharmaceutica Pub Date : 2022-12-21 DOI:10.3390/scipharm91010001
Menna M. Abdellatif, S. M. Ahmed, M. EL-NABARAWI, M. Teaima
{"title":"阳离子纳米载体提高盐酸万古霉素的口服生物利用度:优化,体外,离体和体内研究","authors":"Menna M. Abdellatif, S. M. Ahmed, M. EL-NABARAWI, M. Teaima","doi":"10.3390/scipharm91010001","DOIUrl":null,"url":null,"abstract":"To explore the performance of the cationic nanocarrier leciplex (LPX) in escalating the oral bioavailability of vancomycin hydrochloride (VAN) by promoting its intestinal permeability. With the aid of a D-optimal design, the effect of numerous factors, including lipid molar ratio, cationic surfactant molar ratio, cationic surfactant type, and lipid type, on LPX characteristics, including entrapment efficacy (EE%), particle size (P.S.), polydispersity index (P.I.), zeta potential value (Z.P.), and steady-state flux (Jss) were assessed. The optimized formula was further evaluated in terms of morphology, ex vivo permeation, stability, cytotoxicity, and in vivo pharmacokinetic study. The optimized formula was spherical-shaped with an E.E. of 85.2 ± 0.95%, a P.S. of 52.74 ± 0.91 nm, a P.I. of 0.21 ± 0.02, a Z.P. of + 60.8 ± 1.75 mV, and a Jss of 175.03 ± 1.68 µg/cm2/hr. Furthermore, the formula increased the intestinal permeability of VAN by 2.3-fold compared to the drug solution. Additionally, the formula was stable, revealed good mucoadhesive properties, and was well tolerated for oral administration. The in vivo pharmacokinetic study demonstrated that the VAN Cmax increased by 2.99-folds and AUC0-12 by 3.41-folds compared to the drug solution. These outcomes proved the potentiality of LPX in increasing the oral bioavailability of poorly absorbed drugs.","PeriodicalId":21601,"journal":{"name":"Scientia Pharmaceutica","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Oral Bioavailability Enhancement of Vancomycin Hydrochloride with Cationic Nanocarrier (Leciplex): Optimization, In Vitro, Ex Vivo, and In Vivo Studies\",\"authors\":\"Menna M. Abdellatif, S. M. Ahmed, M. EL-NABARAWI, M. Teaima\",\"doi\":\"10.3390/scipharm91010001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To explore the performance of the cationic nanocarrier leciplex (LPX) in escalating the oral bioavailability of vancomycin hydrochloride (VAN) by promoting its intestinal permeability. With the aid of a D-optimal design, the effect of numerous factors, including lipid molar ratio, cationic surfactant molar ratio, cationic surfactant type, and lipid type, on LPX characteristics, including entrapment efficacy (EE%), particle size (P.S.), polydispersity index (P.I.), zeta potential value (Z.P.), and steady-state flux (Jss) were assessed. The optimized formula was further evaluated in terms of morphology, ex vivo permeation, stability, cytotoxicity, and in vivo pharmacokinetic study. The optimized formula was spherical-shaped with an E.E. of 85.2 ± 0.95%, a P.S. of 52.74 ± 0.91 nm, a P.I. of 0.21 ± 0.02, a Z.P. of + 60.8 ± 1.75 mV, and a Jss of 175.03 ± 1.68 µg/cm2/hr. Furthermore, the formula increased the intestinal permeability of VAN by 2.3-fold compared to the drug solution. Additionally, the formula was stable, revealed good mucoadhesive properties, and was well tolerated for oral administration. The in vivo pharmacokinetic study demonstrated that the VAN Cmax increased by 2.99-folds and AUC0-12 by 3.41-folds compared to the drug solution. These outcomes proved the potentiality of LPX in increasing the oral bioavailability of poorly absorbed drugs.\",\"PeriodicalId\":21601,\"journal\":{\"name\":\"Scientia Pharmaceutica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientia Pharmaceutica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/scipharm91010001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientia Pharmaceutica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/scipharm91010001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 1

摘要

探讨阳离子纳米载体复合剂(LPX)通过促进盐酸万古霉素(VAN)的肠通透性来提高其口服生物利用度的作用。通过d -优化设计,评估了脂质摩尔比、阳离子表面活性剂摩尔比、阳离子表面活性剂类型和脂质类型等因素对LPX吸附效率(EE%)、粒径(P.S.)、多分散性指数(P.I.)、zeta电位值(Z.P.)和稳态通量(Jss)等特性的影响。进一步从形态、体外渗透、稳定性、细胞毒性和体内药代动力学研究等方面对优化后的配方进行评价。优化后的配方呈球形,E.E.为85.2±0.95%,P.S.为52.74±0.91 nm, P.I.为0.21±0.02,zp为+ 60.8±1.75 mV, Jss为175.03±1.68µg/cm2/hr。此外,与药物溶液相比,该配方使VAN的肠通透性提高了2.3倍。此外,该配方稳定,具有良好的粘接性能,口服耐受性好。体内药代动力学研究表明,与药物溶液相比,VAN Cmax增加了2.99倍,AUC0-12增加了3.41倍。这些结果证明了LPX在提高吸收不良药物的口服生物利用度方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Oral Bioavailability Enhancement of Vancomycin Hydrochloride with Cationic Nanocarrier (Leciplex): Optimization, In Vitro, Ex Vivo, and In Vivo Studies
To explore the performance of the cationic nanocarrier leciplex (LPX) in escalating the oral bioavailability of vancomycin hydrochloride (VAN) by promoting its intestinal permeability. With the aid of a D-optimal design, the effect of numerous factors, including lipid molar ratio, cationic surfactant molar ratio, cationic surfactant type, and lipid type, on LPX characteristics, including entrapment efficacy (EE%), particle size (P.S.), polydispersity index (P.I.), zeta potential value (Z.P.), and steady-state flux (Jss) were assessed. The optimized formula was further evaluated in terms of morphology, ex vivo permeation, stability, cytotoxicity, and in vivo pharmacokinetic study. The optimized formula was spherical-shaped with an E.E. of 85.2 ± 0.95%, a P.S. of 52.74 ± 0.91 nm, a P.I. of 0.21 ± 0.02, a Z.P. of + 60.8 ± 1.75 mV, and a Jss of 175.03 ± 1.68 µg/cm2/hr. Furthermore, the formula increased the intestinal permeability of VAN by 2.3-fold compared to the drug solution. Additionally, the formula was stable, revealed good mucoadhesive properties, and was well tolerated for oral administration. The in vivo pharmacokinetic study demonstrated that the VAN Cmax increased by 2.99-folds and AUC0-12 by 3.41-folds compared to the drug solution. These outcomes proved the potentiality of LPX in increasing the oral bioavailability of poorly absorbed drugs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientia Pharmaceutica
Scientia Pharmaceutica Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
4.60
自引率
4.00%
发文量
67
审稿时长
10 weeks
期刊最新文献
The Extraction of Bioactive Agents from Calophyllum inophyllum L., and Their Pharmacological Properties The Risks of “Getting High” on Over-the-Counter Drugs during Pregnancy Diastereomers of Spheroidal Form and Commercially Available Taxifolin Samples Inhibitory Effect of Mistletoe Ointment on DNCB-Induced Atopic Dermatitis in BALB/c Mice Assessing the Influence of a Rotating Magnetic Field on Ibuprofen Permeability from Diverse Pharmaceutical Formulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1