{"title":"限制性斐波那契词的统计","authors":"Omer Egecloglu","doi":"10.22108/TOC.2020.123414.1733","DOIUrl":null,"url":null,"abstract":"We study two foremost Mahonian statistics, the major index and the inversion number for a class of binary words called restricted Fibonacci words. The language of restricted Fibonacci words satisfies recurrences which allow for the calculation of the generating functions in two different ways. These yield identities involving the $q$-binomial coefficients and provide non-standard $q$-analogues of the Fibonacci numbers. The major index generating function for restricted Fibonacci words turns out to be a $q$-power multiple of the inversion generating function.","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"10 1","pages":"31-42"},"PeriodicalIF":0.6000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Statistics on restricted Fibonacci words\",\"authors\":\"Omer Egecloglu\",\"doi\":\"10.22108/TOC.2020.123414.1733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study two foremost Mahonian statistics, the major index and the inversion number for a class of binary words called restricted Fibonacci words. The language of restricted Fibonacci words satisfies recurrences which allow for the calculation of the generating functions in two different ways. These yield identities involving the $q$-binomial coefficients and provide non-standard $q$-analogues of the Fibonacci numbers. The major index generating function for restricted Fibonacci words turns out to be a $q$-power multiple of the inversion generating function.\",\"PeriodicalId\":43837,\"journal\":{\"name\":\"Transactions on Combinatorics\",\"volume\":\"10 1\",\"pages\":\"31-42\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/TOC.2020.123414.1733\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2020.123414.1733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
We study two foremost Mahonian statistics, the major index and the inversion number for a class of binary words called restricted Fibonacci words. The language of restricted Fibonacci words satisfies recurrences which allow for the calculation of the generating functions in two different ways. These yield identities involving the $q$-binomial coefficients and provide non-standard $q$-analogues of the Fibonacci numbers. The major index generating function for restricted Fibonacci words turns out to be a $q$-power multiple of the inversion generating function.