{"title":"在线面板数据质量:基于深度学习方法的情感分析","authors":"Youb Ibtissam, Azmani Abdallah, Hamlich Mohamed","doi":"10.11591/ijai.v12.i3.pp1468-1475","DOIUrl":null,"url":null,"abstract":"The rise of online access panels has profoundly changed the market research landscape. Often presented by their owners as very powerful tools, they nevertheless raise important scientific questions, particularly regarding the representativeness of the samples they produce and, consequently, the validity of the information they provide. In this paper, we present an innovative approach, based on deep learning and sentiment analysis techniques, to assess in real time the representativeness of an online panel sample. The idea is to measure the extent to which the opinions of an online panel converge with opinions on social networks. To validate the proposed method, we conducted a case study on the emerging discussion on Coronavirus disease (COVID-19) vaccination. The results not only proved the representativeness of online panel sample, but also demonstrated the feasibility and effectiveness of our approach.","PeriodicalId":52221,"journal":{"name":"IAES International Journal of Artificial Intelligence","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online panel data quality: a sentiment analysis based on a deep learning approach\",\"authors\":\"Youb Ibtissam, Azmani Abdallah, Hamlich Mohamed\",\"doi\":\"10.11591/ijai.v12.i3.pp1468-1475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rise of online access panels has profoundly changed the market research landscape. Often presented by their owners as very powerful tools, they nevertheless raise important scientific questions, particularly regarding the representativeness of the samples they produce and, consequently, the validity of the information they provide. In this paper, we present an innovative approach, based on deep learning and sentiment analysis techniques, to assess in real time the representativeness of an online panel sample. The idea is to measure the extent to which the opinions of an online panel converge with opinions on social networks. To validate the proposed method, we conducted a case study on the emerging discussion on Coronavirus disease (COVID-19) vaccination. The results not only proved the representativeness of online panel sample, but also demonstrated the feasibility and effectiveness of our approach.\",\"PeriodicalId\":52221,\"journal\":{\"name\":\"IAES International Journal of Artificial Intelligence\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IAES International Journal of Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijai.v12.i3.pp1468-1475\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAES International Journal of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijai.v12.i3.pp1468-1475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Decision Sciences","Score":null,"Total":0}
Online panel data quality: a sentiment analysis based on a deep learning approach
The rise of online access panels has profoundly changed the market research landscape. Often presented by their owners as very powerful tools, they nevertheless raise important scientific questions, particularly regarding the representativeness of the samples they produce and, consequently, the validity of the information they provide. In this paper, we present an innovative approach, based on deep learning and sentiment analysis techniques, to assess in real time the representativeness of an online panel sample. The idea is to measure the extent to which the opinions of an online panel converge with opinions on social networks. To validate the proposed method, we conducted a case study on the emerging discussion on Coronavirus disease (COVID-19) vaccination. The results not only proved the representativeness of online panel sample, but also demonstrated the feasibility and effectiveness of our approach.