{"title":"热力学热机的随机控制","authors":"Rui Fu, Qingyun Wang","doi":"10.1016/j.arcontrol.2023.04.005","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Thermodynamics historically developed out of a desire to quantify the maximal efficiency of early thermodynamic heat engines, especially through the work of French physicist Sadi Carnot. However, the more practical problem about quantifying the limits of </span>power output<span> that can be delivered from the system remained unclear due to the fact that quasistatic process requires infinite operation time, resulting in a vanishing power output. Recent advances in the field of stochastic thermodynamics appear to link the theory and practice, which enables us to mathematically analyze the maximal power and also control design of a thermodynamic heat engine on the microscopic scale. This review aims at summarizing and categorizing previous research on the optimal performance of two kinds of finite-time stochastic thermodynamic engines (a Carnot-like heat engine and the heat engine with a single heat bath) both in the linear and </span></span>nonlinear response regimes. Thus, this is to be expected, estimated bounds for maximal power output and optimal control can provide physical insights and guidelines for engineering design. We start by reviewing the optimal performance for the Carnot-like engine that alternates between two heat baths of different constant temperatures. Then we discuss the fundamental bounds of the power output for the heat engine with a single periodic heat bath. In each setting, we provide a comprehensive analysis of the maximal power and efficiency both in the linear and nonlinear regimes. Finally, several challenges and future research directions are concluded.</p></div>","PeriodicalId":50750,"journal":{"name":"Annual Reviews in Control","volume":"56 ","pages":"Article 100894"},"PeriodicalIF":7.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stochastic control of thermodynamic heat engines\",\"authors\":\"Rui Fu, Qingyun Wang\",\"doi\":\"10.1016/j.arcontrol.2023.04.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Thermodynamics historically developed out of a desire to quantify the maximal efficiency of early thermodynamic heat engines, especially through the work of French physicist Sadi Carnot. However, the more practical problem about quantifying the limits of </span>power output<span> that can be delivered from the system remained unclear due to the fact that quasistatic process requires infinite operation time, resulting in a vanishing power output. Recent advances in the field of stochastic thermodynamics appear to link the theory and practice, which enables us to mathematically analyze the maximal power and also control design of a thermodynamic heat engine on the microscopic scale. This review aims at summarizing and categorizing previous research on the optimal performance of two kinds of finite-time stochastic thermodynamic engines (a Carnot-like heat engine and the heat engine with a single heat bath) both in the linear and </span></span>nonlinear response regimes. Thus, this is to be expected, estimated bounds for maximal power output and optimal control can provide physical insights and guidelines for engineering design. We start by reviewing the optimal performance for the Carnot-like engine that alternates between two heat baths of different constant temperatures. Then we discuss the fundamental bounds of the power output for the heat engine with a single periodic heat bath. In each setting, we provide a comprehensive analysis of the maximal power and efficiency both in the linear and nonlinear regimes. Finally, several challenges and future research directions are concluded.</p></div>\",\"PeriodicalId\":50750,\"journal\":{\"name\":\"Annual Reviews in Control\",\"volume\":\"56 \",\"pages\":\"Article 100894\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Reviews in Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1367578823000238\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Reviews in Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1367578823000238","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Thermodynamics historically developed out of a desire to quantify the maximal efficiency of early thermodynamic heat engines, especially through the work of French physicist Sadi Carnot. However, the more practical problem about quantifying the limits of power output that can be delivered from the system remained unclear due to the fact that quasistatic process requires infinite operation time, resulting in a vanishing power output. Recent advances in the field of stochastic thermodynamics appear to link the theory and practice, which enables us to mathematically analyze the maximal power and also control design of a thermodynamic heat engine on the microscopic scale. This review aims at summarizing and categorizing previous research on the optimal performance of two kinds of finite-time stochastic thermodynamic engines (a Carnot-like heat engine and the heat engine with a single heat bath) both in the linear and nonlinear response regimes. Thus, this is to be expected, estimated bounds for maximal power output and optimal control can provide physical insights and guidelines for engineering design. We start by reviewing the optimal performance for the Carnot-like engine that alternates between two heat baths of different constant temperatures. Then we discuss the fundamental bounds of the power output for the heat engine with a single periodic heat bath. In each setting, we provide a comprehensive analysis of the maximal power and efficiency both in the linear and nonlinear regimes. Finally, several challenges and future research directions are concluded.
期刊介绍:
The field of Control is changing very fast now with technology-driven “societal grand challenges” and with the deployment of new digital technologies. The aim of Annual Reviews in Control is to provide comprehensive and visionary views of the field of Control, by publishing the following types of review articles:
Survey Article: Review papers on main methodologies or technical advances adding considerable technical value to the state of the art. Note that papers which purely rely on mechanistic searches and lack comprehensive analysis providing a clear contribution to the field will be rejected.
Vision Article: Cutting-edge and emerging topics with visionary perspective on the future of the field or how it will bridge multiple disciplines, and
Tutorial research Article: Fundamental guides for future studies.