基于区块链的资源受限物联网设备公平云审计

IF 7 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Transactions on Dependable and Secure Computing Pub Date : 2023-09-01 DOI:10.1109/TDSC.2022.3207384
Lei Zhou, Anmin Fu, Guomin Yang, Yansong Gao, Shui Yu, R. Deng
{"title":"基于区块链的资源受限物联网设备公平云审计","authors":"Lei Zhou, Anmin Fu, Guomin Yang, Yansong Gao, Shui Yu, R. Deng","doi":"10.1109/TDSC.2022.3207384","DOIUrl":null,"url":null,"abstract":"Internet of Things (IoT) devices upload their data into the cloud for storage because of their limited resources. However, cloud storage data has been subject to potential integrity threats, and consequently auditing techniques are demanded to ensure the integrity of stored data. Unfortunately, existing auditing approaches require owners to undertake expensive tag calculations, which is unsuitable for resource-constrained IoT devices. To resolve the issue, we present a Fair Cloud Auditing proposal by employing the Blockchain (FCAB). We combine certificateless signatures with the designed dynamic structure to constructively offload the cost of tag computation from the IoT device to the introduced fog node, significantly reducing the local burden. Considering that fog nodes may behave dishonestly during auditing, FCAB enables the IoT device to verify the audit result's authenticity by extracting reliable checking records from the blockchain, thereby achieving auditing fairness, which ensures that the honest cloud and fog node will gain the corresponding reward. Finally, FCAB is proved to satisfy tag unforgeability, proof unforgeability, privacy preserving, and auditing fairness. Experiment evaluations affirm that FCAB is computationally and communicationally efficient and retains a smaller and fixed computation locally at the data processing stage (mainly including tag computation) than existing auditing methods.","PeriodicalId":13047,"journal":{"name":"IEEE Transactions on Dependable and Secure Computing","volume":"20 1","pages":"4325-4342"},"PeriodicalIF":7.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fair Cloud Auditing Based on Blockchain for Resource-Constrained IoT Devices\",\"authors\":\"Lei Zhou, Anmin Fu, Guomin Yang, Yansong Gao, Shui Yu, R. Deng\",\"doi\":\"10.1109/TDSC.2022.3207384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Internet of Things (IoT) devices upload their data into the cloud for storage because of their limited resources. However, cloud storage data has been subject to potential integrity threats, and consequently auditing techniques are demanded to ensure the integrity of stored data. Unfortunately, existing auditing approaches require owners to undertake expensive tag calculations, which is unsuitable for resource-constrained IoT devices. To resolve the issue, we present a Fair Cloud Auditing proposal by employing the Blockchain (FCAB). We combine certificateless signatures with the designed dynamic structure to constructively offload the cost of tag computation from the IoT device to the introduced fog node, significantly reducing the local burden. Considering that fog nodes may behave dishonestly during auditing, FCAB enables the IoT device to verify the audit result's authenticity by extracting reliable checking records from the blockchain, thereby achieving auditing fairness, which ensures that the honest cloud and fog node will gain the corresponding reward. Finally, FCAB is proved to satisfy tag unforgeability, proof unforgeability, privacy preserving, and auditing fairness. Experiment evaluations affirm that FCAB is computationally and communicationally efficient and retains a smaller and fixed computation locally at the data processing stage (mainly including tag computation) than existing auditing methods.\",\"PeriodicalId\":13047,\"journal\":{\"name\":\"IEEE Transactions on Dependable and Secure Computing\",\"volume\":\"20 1\",\"pages\":\"4325-4342\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Dependable and Secure Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TDSC.2022.3207384\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dependable and Secure Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TDSC.2022.3207384","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 2

摘要

由于资源有限,物联网(IoT)设备将其数据上传到云端进行存储。然而,云存储数据一直受到潜在的完整性威胁,因此需要审计技术来确保存储数据的完整性。不幸的是,现有的审计方法需要所有者进行昂贵的标签计算,这不适合资源受限的物联网设备。为了解决这个问题,我们提出了一个采用区块链(FCAB)的公平云审计提案。我们将无证书签名与设计的动态结构相结合,建设性地将标签计算成本从物联网设备转移到引入的雾节点,显著降低了本地负担。考虑到雾节点在审计过程中可能存在不诚实行为,FCAB通过从区块链中提取可靠的检查记录,使物联网设备能够验证审计结果的真实性,从而实现审计公平性,从而保证诚实的云雾节点获得相应的奖励。最后,证明了FCAB满足标签不可伪造性、证明不可伪造性、隐私保护性和审计公平性。实验评价证实,与现有审计方法相比,FCAB具有计算和通信效率,并且在数据处理阶段(主要包括标签计算)保留了更小且固定的局部计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fair Cloud Auditing Based on Blockchain for Resource-Constrained IoT Devices
Internet of Things (IoT) devices upload their data into the cloud for storage because of their limited resources. However, cloud storage data has been subject to potential integrity threats, and consequently auditing techniques are demanded to ensure the integrity of stored data. Unfortunately, existing auditing approaches require owners to undertake expensive tag calculations, which is unsuitable for resource-constrained IoT devices. To resolve the issue, we present a Fair Cloud Auditing proposal by employing the Blockchain (FCAB). We combine certificateless signatures with the designed dynamic structure to constructively offload the cost of tag computation from the IoT device to the introduced fog node, significantly reducing the local burden. Considering that fog nodes may behave dishonestly during auditing, FCAB enables the IoT device to verify the audit result's authenticity by extracting reliable checking records from the blockchain, thereby achieving auditing fairness, which ensures that the honest cloud and fog node will gain the corresponding reward. Finally, FCAB is proved to satisfy tag unforgeability, proof unforgeability, privacy preserving, and auditing fairness. Experiment evaluations affirm that FCAB is computationally and communicationally efficient and retains a smaller and fixed computation locally at the data processing stage (mainly including tag computation) than existing auditing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Dependable and Secure Computing
IEEE Transactions on Dependable and Secure Computing 工程技术-计算机:软件工程
CiteScore
11.20
自引率
5.50%
发文量
354
审稿时长
9 months
期刊介绍: The "IEEE Transactions on Dependable and Secure Computing (TDSC)" is a prestigious journal that publishes high-quality, peer-reviewed research in the field of computer science, specifically targeting the development of dependable and secure computing systems and networks. This journal is dedicated to exploring the fundamental principles, methodologies, and mechanisms that enable the design, modeling, and evaluation of systems that meet the required levels of reliability, security, and performance. The scope of TDSC includes research on measurement, modeling, and simulation techniques that contribute to the understanding and improvement of system performance under various constraints. It also covers the foundations necessary for the joint evaluation, verification, and design of systems that balance performance, security, and dependability. By publishing archival research results, TDSC aims to provide a valuable resource for researchers, engineers, and practitioners working in the areas of cybersecurity, fault tolerance, and system reliability. The journal's focus on cutting-edge research ensures that it remains at the forefront of advancements in the field, promoting the development of technologies that are critical for the functioning of modern, complex systems.
期刊最新文献
Blockchain Based Auditable Access Control For Business Processes With Event Driven Policies. A Comprehensive Trusted Runtime for WebAssembly with Intel SGX TAICHI: Transform Your Secret Exploits Into Mine From a Victim’s Perspective Black Swan in Blockchain: Micro Analysis of Natural Forking Spenny: Extensive ICS Protocol Reverse Analysis via Field Guided Symbolic Execution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1