{"title":"光电与光子传感器,传感器前沿","authors":"Kyunghwan Oh","doi":"10.3389/fsens.2022.921795","DOIUrl":null,"url":null,"abstract":"Optoelectronic and photonic (OE-P) sensors incessantly expand their roles in emerging sciences and technologies that evolve into new industries. Various OE-P sensors are being developed and implemented in autonomous vehicles to secure precise maneuvering. In-situ sensing of physical parameters between a vehicle and surrounding objects demands an unprecedented level of OE-P sensing technology. The broader expansion of internet-of-things technologies into industry and society is facing new hurdles to which OE-P sensors can provide solutions. Furthermore, recent green taxonomy regulations have opened a new avenue of detection, monitoring, and feedback of environmentally sensitive substances. OE-P sensors will generate an interdisciplinary technical platform capable of coping with these societal issues, in a bottom-up manner. This platform will encompass novel sensing materials, creative device structures, multi-functional components, and integrated system implementation. OE-P sensors will also include the innovative area of sensing based on quantum technologies that can extend the sensing scope into nanoscale dimensions. Autonomous vehicles are being explored in various prototypes, and numerous supporting sensors are being developed (Ignatious et al., 2022). Yet, they share a fundamental challenge for sensor technology-how to measure distances between the moving vehicle and its surrounding objects in real-time. Lidar became one of the critical solutions to this task (Li and Ibanez-Guzman, 2020). It is a sensor unit that illuminates the surroundings by emitting lasers. Ranges are measured precisely by opto-electronically processing the re fl ected laser returns from surfaces. Lidar is an excellent example of an OE-P sensor that integrates the pathways of electrons and photons to sense physical quantities. Information on the physical range between two objects can be converted into meaningful information. We believe that Lidar can serve as a platform for OE-P sensor technologies that can be expanded to other areas such as structural safety monitoring, seismic sensing, as well as robot orthopedic operations.","PeriodicalId":93754,"journal":{"name":"Frontiers in sensors","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optoelectronic and Photonic Sensors, Frontiers in Sensors\",\"authors\":\"Kyunghwan Oh\",\"doi\":\"10.3389/fsens.2022.921795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optoelectronic and photonic (OE-P) sensors incessantly expand their roles in emerging sciences and technologies that evolve into new industries. Various OE-P sensors are being developed and implemented in autonomous vehicles to secure precise maneuvering. In-situ sensing of physical parameters between a vehicle and surrounding objects demands an unprecedented level of OE-P sensing technology. The broader expansion of internet-of-things technologies into industry and society is facing new hurdles to which OE-P sensors can provide solutions. Furthermore, recent green taxonomy regulations have opened a new avenue of detection, monitoring, and feedback of environmentally sensitive substances. OE-P sensors will generate an interdisciplinary technical platform capable of coping with these societal issues, in a bottom-up manner. This platform will encompass novel sensing materials, creative device structures, multi-functional components, and integrated system implementation. OE-P sensors will also include the innovative area of sensing based on quantum technologies that can extend the sensing scope into nanoscale dimensions. Autonomous vehicles are being explored in various prototypes, and numerous supporting sensors are being developed (Ignatious et al., 2022). Yet, they share a fundamental challenge for sensor technology-how to measure distances between the moving vehicle and its surrounding objects in real-time. Lidar became one of the critical solutions to this task (Li and Ibanez-Guzman, 2020). It is a sensor unit that illuminates the surroundings by emitting lasers. Ranges are measured precisely by opto-electronically processing the re fl ected laser returns from surfaces. Lidar is an excellent example of an OE-P sensor that integrates the pathways of electrons and photons to sense physical quantities. Information on the physical range between two objects can be converted into meaningful information. We believe that Lidar can serve as a platform for OE-P sensor technologies that can be expanded to other areas such as structural safety monitoring, seismic sensing, as well as robot orthopedic operations.\",\"PeriodicalId\":93754,\"journal\":{\"name\":\"Frontiers in sensors\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fsens.2022.921795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fsens.2022.921795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optoelectronic and Photonic Sensors, Frontiers in Sensors
Optoelectronic and photonic (OE-P) sensors incessantly expand their roles in emerging sciences and technologies that evolve into new industries. Various OE-P sensors are being developed and implemented in autonomous vehicles to secure precise maneuvering. In-situ sensing of physical parameters between a vehicle and surrounding objects demands an unprecedented level of OE-P sensing technology. The broader expansion of internet-of-things technologies into industry and society is facing new hurdles to which OE-P sensors can provide solutions. Furthermore, recent green taxonomy regulations have opened a new avenue of detection, monitoring, and feedback of environmentally sensitive substances. OE-P sensors will generate an interdisciplinary technical platform capable of coping with these societal issues, in a bottom-up manner. This platform will encompass novel sensing materials, creative device structures, multi-functional components, and integrated system implementation. OE-P sensors will also include the innovative area of sensing based on quantum technologies that can extend the sensing scope into nanoscale dimensions. Autonomous vehicles are being explored in various prototypes, and numerous supporting sensors are being developed (Ignatious et al., 2022). Yet, they share a fundamental challenge for sensor technology-how to measure distances between the moving vehicle and its surrounding objects in real-time. Lidar became one of the critical solutions to this task (Li and Ibanez-Guzman, 2020). It is a sensor unit that illuminates the surroundings by emitting lasers. Ranges are measured precisely by opto-electronically processing the re fl ected laser returns from surfaces. Lidar is an excellent example of an OE-P sensor that integrates the pathways of electrons and photons to sense physical quantities. Information on the physical range between two objects can be converted into meaningful information. We believe that Lidar can serve as a platform for OE-P sensor technologies that can be expanded to other areas such as structural safety monitoring, seismic sensing, as well as robot orthopedic operations.