Jakov Stanislav Uglešić, Filip Skendrović, Iva Lončar, Snježana Markušić, Davor Stanko
{"title":"区域调整地面运动模型:以2020年克罗地亚佩特里尼亚ML6.2 (Mw6.4)地震为例","authors":"Jakov Stanislav Uglešić, Filip Skendrović, Iva Lončar, Snježana Markušić, Davor Stanko","doi":"10.1007/s11200-022-0914-6","DOIUrl":null,"url":null,"abstract":"<div><p>In the wake of recent 2020 M<sub>L</sub> ≥ 5.5 earthquakes in Croatia, Zagreb M<sub>L</sub>5.5 and Petrinja M<sub>L</sub>6.2, the insufficient instrumental network as well as the lack of regional ground motion prediction equation (GMPE) were identified as the drawbacks of our engineering community. The former is related to the quality definition of active seismicity (most of the instruments are installed in the southern part of Croatia with fewer installed around Zagreb in the northwestern part of Croatia), and the latter is related to the proper number of strong motion recordings. In Croatia, there is a sparse database of ground motion recordings for moderate earthquakes which makes a well-designed ground motion selecting procedure hardly achievable. Following this, strong motion BSHAP database for empirical estimation of the response spectrum based on Fourier amplitude spectrum and the ground motion duration using Random Vibration Theory approach adjusted to source, propagation, and local site conditions was used. Regionally adjusted ground motion model estimations for the M<sub>L</sub>6.2 Petrinja 2020 earthquake scenario are comparable with the previously published GMPEs models for this part of Europe and for the Western part of North America. However, model-to-model variability and uncertainties in local GMPE exceeded those of global GMPEs and are influenced by statistically less stable and more limited datasets. Model is applicable for magnitudes up to M<sub>w</sub>6.5 and Joyner-Boore distances up to 200 km with usable frequency range between 0.4 and 33 Hz. The presented model is a step forward toward performing hybrid-empirical seismic hazard studies in areas with sparse ground motions such as the region of Croatia.</p></div>","PeriodicalId":22001,"journal":{"name":"Studia Geophysica et Geodaetica","volume":"66 3-4","pages":"162 - 186"},"PeriodicalIF":0.5000,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regionally adjusted ground motion model: Case study of the ML6.2 (Mw6.4) Petrinja (Croatia) 2020 earthquake\",\"authors\":\"Jakov Stanislav Uglešić, Filip Skendrović, Iva Lončar, Snježana Markušić, Davor Stanko\",\"doi\":\"10.1007/s11200-022-0914-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the wake of recent 2020 M<sub>L</sub> ≥ 5.5 earthquakes in Croatia, Zagreb M<sub>L</sub>5.5 and Petrinja M<sub>L</sub>6.2, the insufficient instrumental network as well as the lack of regional ground motion prediction equation (GMPE) were identified as the drawbacks of our engineering community. The former is related to the quality definition of active seismicity (most of the instruments are installed in the southern part of Croatia with fewer installed around Zagreb in the northwestern part of Croatia), and the latter is related to the proper number of strong motion recordings. In Croatia, there is a sparse database of ground motion recordings for moderate earthquakes which makes a well-designed ground motion selecting procedure hardly achievable. Following this, strong motion BSHAP database for empirical estimation of the response spectrum based on Fourier amplitude spectrum and the ground motion duration using Random Vibration Theory approach adjusted to source, propagation, and local site conditions was used. Regionally adjusted ground motion model estimations for the M<sub>L</sub>6.2 Petrinja 2020 earthquake scenario are comparable with the previously published GMPEs models for this part of Europe and for the Western part of North America. However, model-to-model variability and uncertainties in local GMPE exceeded those of global GMPEs and are influenced by statistically less stable and more limited datasets. Model is applicable for magnitudes up to M<sub>w</sub>6.5 and Joyner-Boore distances up to 200 km with usable frequency range between 0.4 and 33 Hz. The presented model is a step forward toward performing hybrid-empirical seismic hazard studies in areas with sparse ground motions such as the region of Croatia.</p></div>\",\"PeriodicalId\":22001,\"journal\":{\"name\":\"Studia Geophysica et Geodaetica\",\"volume\":\"66 3-4\",\"pages\":\"162 - 186\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Geophysica et Geodaetica\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11200-022-0914-6\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Geophysica et Geodaetica","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s11200-022-0914-6","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Regionally adjusted ground motion model: Case study of the ML6.2 (Mw6.4) Petrinja (Croatia) 2020 earthquake
In the wake of recent 2020 ML ≥ 5.5 earthquakes in Croatia, Zagreb ML5.5 and Petrinja ML6.2, the insufficient instrumental network as well as the lack of regional ground motion prediction equation (GMPE) were identified as the drawbacks of our engineering community. The former is related to the quality definition of active seismicity (most of the instruments are installed in the southern part of Croatia with fewer installed around Zagreb in the northwestern part of Croatia), and the latter is related to the proper number of strong motion recordings. In Croatia, there is a sparse database of ground motion recordings for moderate earthquakes which makes a well-designed ground motion selecting procedure hardly achievable. Following this, strong motion BSHAP database for empirical estimation of the response spectrum based on Fourier amplitude spectrum and the ground motion duration using Random Vibration Theory approach adjusted to source, propagation, and local site conditions was used. Regionally adjusted ground motion model estimations for the ML6.2 Petrinja 2020 earthquake scenario are comparable with the previously published GMPEs models for this part of Europe and for the Western part of North America. However, model-to-model variability and uncertainties in local GMPE exceeded those of global GMPEs and are influenced by statistically less stable and more limited datasets. Model is applicable for magnitudes up to Mw6.5 and Joyner-Boore distances up to 200 km with usable frequency range between 0.4 and 33 Hz. The presented model is a step forward toward performing hybrid-empirical seismic hazard studies in areas with sparse ground motions such as the region of Croatia.
期刊介绍:
Studia geophysica et geodaetica is an international journal covering all aspects of geophysics, meteorology and climatology, and of geodesy. Published by the Institute of Geophysics of the Academy of Sciences of the Czech Republic, it has a long tradition, being published quarterly since 1956. Studia publishes theoretical and methodological contributions, which are of interest for academia as well as industry. The journal offers fast publication of contributions in regular as well as topical issues.