三轴MEMS加速度计双证明质量soi类套表结构的微加工

IF 2.8 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Micro and Nano Engineering Pub Date : 2023-06-01 DOI:10.1016/j.mne.2023.100204
Inês S. Garcia , José Fernandes , José B. Queiroz , Carlos Calaza , José Moreira , Rosana A. Dias , Filipe S. Alves
{"title":"三轴MEMS加速度计双证明质量soi类套表结构的微加工","authors":"Inês S. Garcia ,&nbsp;José Fernandes ,&nbsp;José B. Queiroz ,&nbsp;Carlos Calaza ,&nbsp;José Moreira ,&nbsp;Rosana A. Dias ,&nbsp;Filipe S. Alves","doi":"10.1016/j.mne.2023.100204","DOIUrl":null,"url":null,"abstract":"<div><p>This work presents a micromachining process that allows the creation of hierarchical, matryoshka-like MEMS structures that can be used for multi-axis sensing. This novel vibration multi-axis MEMS sensor based on the capacitive open-loop operation can be widely deployed in the structural monitoring systems due to its simple fabrication and operating principle. The device is composed by a double proof-mass hierarchical design with separate sets of electrodes for in-plane differential measurements. The operation principle of this multi-axis device relies on the fact that accelerations in the zz direction will induce a change in the overlapping area of the xx and yy sensing electrodes, extracted from the single-ended capacitance measurement, while xx and yy accelerations will yield a differential capacitance change. To sense the direction of zz accelerations (capacitance decrease independently of the direction), out-of-plane parallel-plates were added to the device using suspended metallic membranes. The devices were fabricated through an in-house process using a seven-mask dicing-free MEMS process on a 10 μm-thick SOI wafer. The proposed devices were successfully validated using a two-degrees of freedom (DoF) setup that induces external accelerations in the three-orthogonal axes and reads the resulting output voltage of the device. It then possible to conclude that using the proposed fabrication process, it is possible to successfully produce functional multi-structure SOI-based devices that integrate suspended metallic membranes.</p></div>","PeriodicalId":37111,"journal":{"name":"Micro and Nano Engineering","volume":"19 ","pages":"Article 100204"},"PeriodicalIF":2.8000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microfabrication of double proof-mass SOI-based matryoshka-like structures for 3-axis MEMS accelerometers\",\"authors\":\"Inês S. Garcia ,&nbsp;José Fernandes ,&nbsp;José B. Queiroz ,&nbsp;Carlos Calaza ,&nbsp;José Moreira ,&nbsp;Rosana A. Dias ,&nbsp;Filipe S. Alves\",\"doi\":\"10.1016/j.mne.2023.100204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work presents a micromachining process that allows the creation of hierarchical, matryoshka-like MEMS structures that can be used for multi-axis sensing. This novel vibration multi-axis MEMS sensor based on the capacitive open-loop operation can be widely deployed in the structural monitoring systems due to its simple fabrication and operating principle. The device is composed by a double proof-mass hierarchical design with separate sets of electrodes for in-plane differential measurements. The operation principle of this multi-axis device relies on the fact that accelerations in the zz direction will induce a change in the overlapping area of the xx and yy sensing electrodes, extracted from the single-ended capacitance measurement, while xx and yy accelerations will yield a differential capacitance change. To sense the direction of zz accelerations (capacitance decrease independently of the direction), out-of-plane parallel-plates were added to the device using suspended metallic membranes. The devices were fabricated through an in-house process using a seven-mask dicing-free MEMS process on a 10 μm-thick SOI wafer. The proposed devices were successfully validated using a two-degrees of freedom (DoF) setup that induces external accelerations in the three-orthogonal axes and reads the resulting output voltage of the device. It then possible to conclude that using the proposed fabrication process, it is possible to successfully produce functional multi-structure SOI-based devices that integrate suspended metallic membranes.</p></div>\",\"PeriodicalId\":37111,\"journal\":{\"name\":\"Micro and Nano Engineering\",\"volume\":\"19 \",\"pages\":\"Article 100204\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nano Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590007223000345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nano Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590007223000345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

这项工作提出了一种微机械加工工艺,该工艺允许创建可用于多轴传感的分层、类matryoshka MEMS结构。这种基于电容开环操作的新型振动多轴MEMS传感器由于其简单的制造和工作原理,可以广泛应用于结构监测系统中。该设备由双验证质量分级设计组成,具有用于平面内差分测量的独立电极组。该多轴装置的工作原理依赖于这样一个事实,即zz方向上的加速度将引起从单端电容测量中提取的xx和yy感测电极的重叠区域的变化,而xx和yi加速度将产生差分电容变化。为了感测zz加速度的方向(电容与方向无关地减小),使用悬浮金属膜将平面外平行板添加到设备中。这些器件是通过内部工艺在10μm厚的SOI晶片上使用七掩模无划片MEMS工艺制造的。使用两自由度(DoF)设置成功验证了所提出的器件,该设置在三个正交轴上感应外部加速度并读取器件的输出电压。然后可以得出结论,使用所提出的制造工艺,可以成功生产集成悬浮金属膜的功能性多结构SOI基器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microfabrication of double proof-mass SOI-based matryoshka-like structures for 3-axis MEMS accelerometers

This work presents a micromachining process that allows the creation of hierarchical, matryoshka-like MEMS structures that can be used for multi-axis sensing. This novel vibration multi-axis MEMS sensor based on the capacitive open-loop operation can be widely deployed in the structural monitoring systems due to its simple fabrication and operating principle. The device is composed by a double proof-mass hierarchical design with separate sets of electrodes for in-plane differential measurements. The operation principle of this multi-axis device relies on the fact that accelerations in the zz direction will induce a change in the overlapping area of the xx and yy sensing electrodes, extracted from the single-ended capacitance measurement, while xx and yy accelerations will yield a differential capacitance change. To sense the direction of zz accelerations (capacitance decrease independently of the direction), out-of-plane parallel-plates were added to the device using suspended metallic membranes. The devices were fabricated through an in-house process using a seven-mask dicing-free MEMS process on a 10 μm-thick SOI wafer. The proposed devices were successfully validated using a two-degrees of freedom (DoF) setup that induces external accelerations in the three-orthogonal axes and reads the resulting output voltage of the device. It then possible to conclude that using the proposed fabrication process, it is possible to successfully produce functional multi-structure SOI-based devices that integrate suspended metallic membranes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Micro and Nano Engineering
Micro and Nano Engineering Engineering-Electrical and Electronic Engineering
CiteScore
3.30
自引率
0.00%
发文量
67
审稿时长
80 days
期刊最新文献
Laser-engraved holograms as entropy source for random number generators Release of hydrogen gas from PECVD silicon nitride thin films in cavities of MEMS sensors Developments in the design and microfabrication of photovoltaic retinal implants Enhanced plasma etching using nonlinear parameter evolution Low-frequency electromagnetic harvester for wind turbine vibrations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1