Javid Ghasemi, M. Moradi, Sayed Hossein Karparvarfard, M. Golmakani, A. Khaneghah
{"title":"柠檬马鞭草叶的薄层干燥动力学:质量评价和数学模型","authors":"Javid Ghasemi, M. Moradi, Sayed Hossein Karparvarfard, M. Golmakani, A. Khaneghah","doi":"10.15586/QAS.V13I1.835","DOIUrl":null,"url":null,"abstract":"The thin-layer drying kinetics of lemon verbena leaves were studied by using a solar cabinet dryer at air tempera-ture (at three levels of 30, 40, and 50°C), air velocity (at three levels of 2, 2.5, and 3 m/s), and mesh tray size (3, 6, and 10 mm). A completely randomized factorial design was used to analyze the effect of independent factors on drying time and essential oil yield. Results showed that all experiments have shorter drying time and higher essen-tial oil content than the shade-drying method. Also, the best drying conditions that led to an optimal essential oil yield (1.73 mL/g DM) involved a lower temperature (30°C) and velocity (2 m/s) and a mesh size of 10 mm. A good adaptation between the experimental and the predicted moisture content was observed, whereby the statistical criteria of R2, root mean square error, and k2 were calculated as 0.99, 0.08, and 0.01, respectively.\nPractical applicationsIn the current study, the effect of different drying states such as air velocity and drying temperature was studied on the drying behaviors and essential oil contents of lemon verbena leaves. The obtained results can lead us to a suitable drying condition that can be used in the subsequent designation of systems. Also, a mathematical model for the pre-diction of the leaves’ drying kinetics was constructed and evaluated, which could be approached in the drying systems.","PeriodicalId":20868,"journal":{"name":"Quality Assurance and Safety of Crops & Foods","volume":"13 1","pages":"59-72"},"PeriodicalIF":4.6000,"publicationDate":"2021-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Thin layer drying kinetics of lemon verbena leaves: a quality assessment and mathematical modeling\",\"authors\":\"Javid Ghasemi, M. Moradi, Sayed Hossein Karparvarfard, M. Golmakani, A. Khaneghah\",\"doi\":\"10.15586/QAS.V13I1.835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The thin-layer drying kinetics of lemon verbena leaves were studied by using a solar cabinet dryer at air tempera-ture (at three levels of 30, 40, and 50°C), air velocity (at three levels of 2, 2.5, and 3 m/s), and mesh tray size (3, 6, and 10 mm). A completely randomized factorial design was used to analyze the effect of independent factors on drying time and essential oil yield. Results showed that all experiments have shorter drying time and higher essen-tial oil content than the shade-drying method. Also, the best drying conditions that led to an optimal essential oil yield (1.73 mL/g DM) involved a lower temperature (30°C) and velocity (2 m/s) and a mesh size of 10 mm. A good adaptation between the experimental and the predicted moisture content was observed, whereby the statistical criteria of R2, root mean square error, and k2 were calculated as 0.99, 0.08, and 0.01, respectively.\\nPractical applicationsIn the current study, the effect of different drying states such as air velocity and drying temperature was studied on the drying behaviors and essential oil contents of lemon verbena leaves. The obtained results can lead us to a suitable drying condition that can be used in the subsequent designation of systems. Also, a mathematical model for the pre-diction of the leaves’ drying kinetics was constructed and evaluated, which could be approached in the drying systems.\",\"PeriodicalId\":20868,\"journal\":{\"name\":\"Quality Assurance and Safety of Crops & Foods\",\"volume\":\"13 1\",\"pages\":\"59-72\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2021-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quality Assurance and Safety of Crops & Foods\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.15586/QAS.V13I1.835\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality Assurance and Safety of Crops & Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.15586/QAS.V13I1.835","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Thin layer drying kinetics of lemon verbena leaves: a quality assessment and mathematical modeling
The thin-layer drying kinetics of lemon verbena leaves were studied by using a solar cabinet dryer at air tempera-ture (at three levels of 30, 40, and 50°C), air velocity (at three levels of 2, 2.5, and 3 m/s), and mesh tray size (3, 6, and 10 mm). A completely randomized factorial design was used to analyze the effect of independent factors on drying time and essential oil yield. Results showed that all experiments have shorter drying time and higher essen-tial oil content than the shade-drying method. Also, the best drying conditions that led to an optimal essential oil yield (1.73 mL/g DM) involved a lower temperature (30°C) and velocity (2 m/s) and a mesh size of 10 mm. A good adaptation between the experimental and the predicted moisture content was observed, whereby the statistical criteria of R2, root mean square error, and k2 were calculated as 0.99, 0.08, and 0.01, respectively.
Practical applicationsIn the current study, the effect of different drying states such as air velocity and drying temperature was studied on the drying behaviors and essential oil contents of lemon verbena leaves. The obtained results can lead us to a suitable drying condition that can be used in the subsequent designation of systems. Also, a mathematical model for the pre-diction of the leaves’ drying kinetics was constructed and evaluated, which could be approached in the drying systems.
期刊介绍:
''Quality Assurance and Safety of Crops & Foods'' is an international peer-reviewed journal publishing research and review papers associated with the quality and safety of food and food sources including cereals, grains, oilseeds, fruits, root crops and animal sources. It targets both primary materials and their conversion to human foods. There is a strong focus on the development and application of new analytical tools and their potential for quality assessment, assurance, control and safety. The scope includes issues of risk assessment, traceability, authenticity, food security and socio-economic impacts. Manuscripts presenting novel data and information that are likely to significantly contribute to scientific knowledge in areas of food quality and safety will be considered.
''Quality Assurance and Safety of Crops & Foods'' provides a forum for all those working in the specialist field of food quality and safety to report on the progress and outcomes of their research.