{"title":"局部磨损和接触粗糙度对轴不对中船舶尾轴轴承混合润滑的影响","authors":"Zeyu Zhao, Qianwen Huang, Minghui Sheng","doi":"10.1002/ls.1655","DOIUrl":null,"url":null,"abstract":"<p>The marine stern bearing provides supporting force by lubricating film to minimise the contact friction with the propeller shaft. A model considers local wear and asperity contact is proposed to investigate the mixed lubrication of bearing with misalignment. The finite difference method and over-relaxation iteration method are employed to solve the average Reynolds equation. The lubrication behaviour includes hydrodynamic pressure, film thickness, contact force and friction coefficient were calculated. The influence of sliding speed, local wear, contact roughness, misalignment angle, elastic deformation and eccentricity ratio is discussed in detail. The critical speed from mixed lubrication to fluid lubrication is obtained by employing the Stribeck curve. Moreover, the dimensionless average hydrodynamic pressure, film thickness and the peak value of contact force are compared.</p>","PeriodicalId":18114,"journal":{"name":"Lubrication Science","volume":"35 7","pages":"498-512"},"PeriodicalIF":1.8000,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The influence of local wear and contact roughness on mixed lubrication of marine stern bearing with misaligned shaft\",\"authors\":\"Zeyu Zhao, Qianwen Huang, Minghui Sheng\",\"doi\":\"10.1002/ls.1655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The marine stern bearing provides supporting force by lubricating film to minimise the contact friction with the propeller shaft. A model considers local wear and asperity contact is proposed to investigate the mixed lubrication of bearing with misalignment. The finite difference method and over-relaxation iteration method are employed to solve the average Reynolds equation. The lubrication behaviour includes hydrodynamic pressure, film thickness, contact force and friction coefficient were calculated. The influence of sliding speed, local wear, contact roughness, misalignment angle, elastic deformation and eccentricity ratio is discussed in detail. The critical speed from mixed lubrication to fluid lubrication is obtained by employing the Stribeck curve. Moreover, the dimensionless average hydrodynamic pressure, film thickness and the peak value of contact force are compared.</p>\",\"PeriodicalId\":18114,\"journal\":{\"name\":\"Lubrication Science\",\"volume\":\"35 7\",\"pages\":\"498-512\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lubrication Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ls.1655\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubrication Science","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ls.1655","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
The influence of local wear and contact roughness on mixed lubrication of marine stern bearing with misaligned shaft
The marine stern bearing provides supporting force by lubricating film to minimise the contact friction with the propeller shaft. A model considers local wear and asperity contact is proposed to investigate the mixed lubrication of bearing with misalignment. The finite difference method and over-relaxation iteration method are employed to solve the average Reynolds equation. The lubrication behaviour includes hydrodynamic pressure, film thickness, contact force and friction coefficient were calculated. The influence of sliding speed, local wear, contact roughness, misalignment angle, elastic deformation and eccentricity ratio is discussed in detail. The critical speed from mixed lubrication to fluid lubrication is obtained by employing the Stribeck curve. Moreover, the dimensionless average hydrodynamic pressure, film thickness and the peak value of contact force are compared.
期刊介绍:
Lubrication Science is devoted to high-quality research which notably advances fundamental and applied aspects of the science and technology related to lubrication. It publishes research articles, short communications and reviews which demonstrate novelty and cutting edge science in the field, aiming to become a key specialised venue for communicating advances in lubrication research and development.
Lubrication is a diverse discipline ranging from lubrication concepts in industrial and automotive engineering, solid-state and gas lubrication, micro & nanolubrication phenomena, to lubrication in biological systems. To investigate these areas the scope of the journal encourages fundamental and application-based studies on:
Synthesis, chemistry and the broader development of high-performing and environmentally adapted lubricants and additives.
State of the art analytical tools and characterisation of lubricants, lubricated surfaces and interfaces.
Solid lubricants, self-lubricating coatings and composites, lubricating nanoparticles.
Gas lubrication.
Extreme-conditions lubrication.
Green-lubrication technology and lubricants.
Tribochemistry and tribocorrosion of environment- and lubricant-interface interactions.
Modelling of lubrication mechanisms and interface phenomena on different scales: from atomic and molecular to mezzo and structural.
Modelling hydrodynamic and thin film lubrication.
All lubrication related aspects of nanotribology.
Surface-lubricant interface interactions and phenomena: wetting, adhesion and adsorption.
Bio-lubrication, bio-lubricants and lubricated biological systems.
Other novel and cutting-edge aspects of lubrication in all lubrication regimes.