NSD随机变量随机加权和的完全矩收敛性

IF 0.8 4区 数学 数学研究 Pub Date : 2019-06-01 DOI:10.4208/JMS.V52N1.19.03
xiangmin Sun
{"title":"NSD随机变量随机加权和的完全矩收敛性","authors":"xiangmin Sun","doi":"10.4208/JMS.V52N1.19.03","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the complete moment convergence and complete convergence for randomly weighted sums of negatively superadditive dependent (NSD, in short) random variables. The results obtained in the paper generalize the convergence theorem for constant weighted sums to randomly weighted sums of dependent random variables. In addition, strong law of large numbers for NSD sequence is obtained. AMS subject classifications: 60F15.","PeriodicalId":43526,"journal":{"name":"数学研究","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Complete Moment Convergence for Randomly Weighted Sums of NSD Random Variables\",\"authors\":\"xiangmin Sun\",\"doi\":\"10.4208/JMS.V52N1.19.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the complete moment convergence and complete convergence for randomly weighted sums of negatively superadditive dependent (NSD, in short) random variables. The results obtained in the paper generalize the convergence theorem for constant weighted sums to randomly weighted sums of dependent random variables. In addition, strong law of large numbers for NSD sequence is obtained. AMS subject classifications: 60F15.\",\"PeriodicalId\":43526,\"journal\":{\"name\":\"数学研究\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"数学研究\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4208/JMS.V52N1.19.03\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"数学研究","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/JMS.V52N1.19.03","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了负超加性相依随机变量随机加权和的完全矩收敛性和完全收敛性。本文的结果将常加权和的收敛定理推广到因随机变量的随机加权和。此外,还得到了NSD序列的强数定律。AMS受试者分类:60F15。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On Complete Moment Convergence for Randomly Weighted Sums of NSD Random Variables
In this paper, we investigate the complete moment convergence and complete convergence for randomly weighted sums of negatively superadditive dependent (NSD, in short) random variables. The results obtained in the paper generalize the convergence theorem for constant weighted sums to randomly weighted sums of dependent random variables. In addition, strong law of large numbers for NSD sequence is obtained. AMS subject classifications: 60F15.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
数学研究
数学研究 MATHEMATICS-
自引率
0.00%
发文量
1109
期刊介绍:
期刊最新文献
The Boundedness Below of $2×2$ Upper Triangular Linear Relation Matrices Non-Regular Pseudo-Differential Operators on Matrix Weighted Besov-Triebel-Lizorkin Spaces Interaction of Ionic Solution with Permeable Membranes: a Variational Approach The 2D Boussinesq-Navier-Stokes Equations with Logarithmically Supercritical Dissipation Conformations and Currents Make the Nerve Signal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1