{"title":"摘要3096:卵巢癌症干细胞中新的ZIP4-NOTCH3-HDAC4轴","authors":"Yan Xu, Qipeng Fan, R. Emerson","doi":"10.1158/1538-7445.AM2021-3096","DOIUrl":null,"url":null,"abstract":"High grade serous ovarian cancer (HGSOC) is one of the most deadly and heterogenic cancers. We have recently shown that ZIP4 (gene name SLC39A4), a zinc transporter, is a novel cancer stem cell (CSC) marker in HGSOC. 100-200 ZIP4+, but not ZIP4-, cells from both PE04 and PEA2 cells formed larger tumors than those from 100-200 ALDH+ cells in mice. Mechanistically, we found that ZIP4 was an upstream regulator of another CSC-marker, NOTCH3, in HGSOC cells. NOTCH3 was functionally involved in spheroid formation in vitro and tumorigenesis in vivo in HGSOC. Drug-resistance is one of the main characteristics of CSCs, While ZIP4 converts drug-resistance to cisplatin (CDDP) and doxorubicin (DOX) as we reported previously, we unexpectedly found that ZIP4 induced a sensitization of HGSOC cells to histone deacetylase inhibitors (HDACis). In particular, only those HDACis against the Class IIa HDACs showed ZIP4-dependent sensitization. ZIP4 selectively up-regulated HDAC IIa HDACs, including HDAC4 and 5, with little or no effects to HDACs in other classes. ZIP4 knockout (KO) and HDAC4 knockdown (KD) increased cell resistance to LMK-235, a selective HDAC4/5 inhibitor. LMK-235 and HDAC4 knockdown (KD) inhibited spheroid formation in vitro and tumor development in vivo. Collectively, we revealed a novel ZIP4-NOTCH3-HDAC4 axis, which is functionally involved and important in CSC-related activities in vitro and tumorigenesis in vivo, and provide an innovative targeting strategy to CSC. Citation Format: Yan Xu, Qipeng Fan, Robert Emerson. A novel ZIP4-NOTCH3-HDAC4 axis in ovarian cancer stem cells [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 3096.","PeriodicalId":23364,"journal":{"name":"Tumor Biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Abstract 3096: A novel ZIP4-NOTCH3-HDAC4 axis in ovarian cancer stem cells\",\"authors\":\"Yan Xu, Qipeng Fan, R. Emerson\",\"doi\":\"10.1158/1538-7445.AM2021-3096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High grade serous ovarian cancer (HGSOC) is one of the most deadly and heterogenic cancers. We have recently shown that ZIP4 (gene name SLC39A4), a zinc transporter, is a novel cancer stem cell (CSC) marker in HGSOC. 100-200 ZIP4+, but not ZIP4-, cells from both PE04 and PEA2 cells formed larger tumors than those from 100-200 ALDH+ cells in mice. Mechanistically, we found that ZIP4 was an upstream regulator of another CSC-marker, NOTCH3, in HGSOC cells. NOTCH3 was functionally involved in spheroid formation in vitro and tumorigenesis in vivo in HGSOC. Drug-resistance is one of the main characteristics of CSCs, While ZIP4 converts drug-resistance to cisplatin (CDDP) and doxorubicin (DOX) as we reported previously, we unexpectedly found that ZIP4 induced a sensitization of HGSOC cells to histone deacetylase inhibitors (HDACis). In particular, only those HDACis against the Class IIa HDACs showed ZIP4-dependent sensitization. ZIP4 selectively up-regulated HDAC IIa HDACs, including HDAC4 and 5, with little or no effects to HDACs in other classes. ZIP4 knockout (KO) and HDAC4 knockdown (KD) increased cell resistance to LMK-235, a selective HDAC4/5 inhibitor. LMK-235 and HDAC4 knockdown (KD) inhibited spheroid formation in vitro and tumor development in vivo. Collectively, we revealed a novel ZIP4-NOTCH3-HDAC4 axis, which is functionally involved and important in CSC-related activities in vitro and tumorigenesis in vivo, and provide an innovative targeting strategy to CSC. Citation Format: Yan Xu, Qipeng Fan, Robert Emerson. A novel ZIP4-NOTCH3-HDAC4 axis in ovarian cancer stem cells [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 3096.\",\"PeriodicalId\":23364,\"journal\":{\"name\":\"Tumor Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tumor Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1158/1538-7445.AM2021-3096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tumor Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1158/1538-7445.AM2021-3096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Abstract 3096: A novel ZIP4-NOTCH3-HDAC4 axis in ovarian cancer stem cells
High grade serous ovarian cancer (HGSOC) is one of the most deadly and heterogenic cancers. We have recently shown that ZIP4 (gene name SLC39A4), a zinc transporter, is a novel cancer stem cell (CSC) marker in HGSOC. 100-200 ZIP4+, but not ZIP4-, cells from both PE04 and PEA2 cells formed larger tumors than those from 100-200 ALDH+ cells in mice. Mechanistically, we found that ZIP4 was an upstream regulator of another CSC-marker, NOTCH3, in HGSOC cells. NOTCH3 was functionally involved in spheroid formation in vitro and tumorigenesis in vivo in HGSOC. Drug-resistance is one of the main characteristics of CSCs, While ZIP4 converts drug-resistance to cisplatin (CDDP) and doxorubicin (DOX) as we reported previously, we unexpectedly found that ZIP4 induced a sensitization of HGSOC cells to histone deacetylase inhibitors (HDACis). In particular, only those HDACis against the Class IIa HDACs showed ZIP4-dependent sensitization. ZIP4 selectively up-regulated HDAC IIa HDACs, including HDAC4 and 5, with little or no effects to HDACs in other classes. ZIP4 knockout (KO) and HDAC4 knockdown (KD) increased cell resistance to LMK-235, a selective HDAC4/5 inhibitor. LMK-235 and HDAC4 knockdown (KD) inhibited spheroid formation in vitro and tumor development in vivo. Collectively, we revealed a novel ZIP4-NOTCH3-HDAC4 axis, which is functionally involved and important in CSC-related activities in vitro and tumorigenesis in vivo, and provide an innovative targeting strategy to CSC. Citation Format: Yan Xu, Qipeng Fan, Robert Emerson. A novel ZIP4-NOTCH3-HDAC4 axis in ovarian cancer stem cells [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 3096.
期刊介绍:
Tumor Biology is a peer reviewed, international journal providing an open access forum for experimental and clinical cancer research. Tumor Biology covers all aspects of tumor markers, molecular biomarkers, tumor targeting, and mechanisms of tumor development and progression.
Specific topics of interest include, but are not limited to:
Pathway analyses,
Non-coding RNAs,
Circulating tumor cells,
Liquid biopsies,
Exosomes,
Epigenetics,
Cancer stem cells,
Tumor immunology and immunotherapy,
Tumor microenvironment,
Targeted therapies,
Therapy resistance
Cancer genetics,
Cancer risk screening.
Studies in other areas of basic, clinical and translational cancer research are also considered in order to promote connections and discoveries across different disciplines.
The journal publishes original articles, reviews, commentaries and guidelines on tumor marker use. All submissions are subject to rigorous peer review and are selected on the basis of whether the research is sound and deserves publication.
Tumor Biology is the Official Journal of the International Society of Oncology and BioMarkers (ISOBM).