{"title":"微生物应用方法对砂土水力导电性时空变化的影响","authors":"Viroon Kamchoom , Thiti Khattiwong , Treesukon Treebupachatsakul , Suraparb Keawsawasvong , Anthony Kwan Leung","doi":"10.1016/j.jrmge.2023.04.024","DOIUrl":null,"url":null,"abstract":"<div><p>The spatiotemporal distributions of microbes in soil by different methods could affect the efficacy of the microbes to reduce the soil hydraulic conductivity. In this study, the specimens of bio-mediated sands were prepared using three different methods, i.e. injecting, mixing, and pouring a given microbial solution onto compacted sand specimens. The hydraulic conductivity was measured by constant-head tests, while any soil microstructural changes due to addition of the microbes were observed by scanning electron microscope (SEM) and mercury intrusion porosimetry (MIP) tests. The amount of dextran concentration produced by microbes in each type of specimen was quantified by a refractometer. Results show that dextran production increased exponentially after 5–7 d of microbial settling with the supply of culture medium. The injection and mixing methods resulted in a similar amount and uniform distribution of dextran in the specimens. The pouring method, however, produced a nonuniform distribution, with a higher concentration near the specimen surface. As the supply of culture medium discontinued, the dextran content near the surface produced by the pouring method decreased dramatically due to high competition for nutrients with foreign colonies. Average dextran concentration was negatively and correlated with hydraulic conductivity of bio-mediated soils exponentially, due to the clogging of large soil pores by dextran. The hydraulic conductivity of the injection and mixing cases did not change significantly when the supply of culture medium was absent.</p></div>","PeriodicalId":54219,"journal":{"name":"Journal of Rock Mechanics and Geotechnical Engineering","volume":"16 1","pages":"Pages 268-278"},"PeriodicalIF":9.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674775523002093/pdfft?md5=25520aafa0b6776a0ab05113fb6ea79a&pid=1-s2.0-S1674775523002093-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Spatiotemporal variations of sand hydraulic conductivity by microbial application methods\",\"authors\":\"Viroon Kamchoom , Thiti Khattiwong , Treesukon Treebupachatsakul , Suraparb Keawsawasvong , Anthony Kwan Leung\",\"doi\":\"10.1016/j.jrmge.2023.04.024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The spatiotemporal distributions of microbes in soil by different methods could affect the efficacy of the microbes to reduce the soil hydraulic conductivity. In this study, the specimens of bio-mediated sands were prepared using three different methods, i.e. injecting, mixing, and pouring a given microbial solution onto compacted sand specimens. The hydraulic conductivity was measured by constant-head tests, while any soil microstructural changes due to addition of the microbes were observed by scanning electron microscope (SEM) and mercury intrusion porosimetry (MIP) tests. The amount of dextran concentration produced by microbes in each type of specimen was quantified by a refractometer. Results show that dextran production increased exponentially after 5–7 d of microbial settling with the supply of culture medium. The injection and mixing methods resulted in a similar amount and uniform distribution of dextran in the specimens. The pouring method, however, produced a nonuniform distribution, with a higher concentration near the specimen surface. As the supply of culture medium discontinued, the dextran content near the surface produced by the pouring method decreased dramatically due to high competition for nutrients with foreign colonies. Average dextran concentration was negatively and correlated with hydraulic conductivity of bio-mediated soils exponentially, due to the clogging of large soil pores by dextran. The hydraulic conductivity of the injection and mixing cases did not change significantly when the supply of culture medium was absent.</p></div>\",\"PeriodicalId\":54219,\"journal\":{\"name\":\"Journal of Rock Mechanics and Geotechnical Engineering\",\"volume\":\"16 1\",\"pages\":\"Pages 268-278\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1674775523002093/pdfft?md5=25520aafa0b6776a0ab05113fb6ea79a&pid=1-s2.0-S1674775523002093-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Rock Mechanics and Geotechnical Engineering\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674775523002093\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rock Mechanics and Geotechnical Engineering","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674775523002093","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Spatiotemporal variations of sand hydraulic conductivity by microbial application methods
The spatiotemporal distributions of microbes in soil by different methods could affect the efficacy of the microbes to reduce the soil hydraulic conductivity. In this study, the specimens of bio-mediated sands were prepared using three different methods, i.e. injecting, mixing, and pouring a given microbial solution onto compacted sand specimens. The hydraulic conductivity was measured by constant-head tests, while any soil microstructural changes due to addition of the microbes were observed by scanning electron microscope (SEM) and mercury intrusion porosimetry (MIP) tests. The amount of dextran concentration produced by microbes in each type of specimen was quantified by a refractometer. Results show that dextran production increased exponentially after 5–7 d of microbial settling with the supply of culture medium. The injection and mixing methods resulted in a similar amount and uniform distribution of dextran in the specimens. The pouring method, however, produced a nonuniform distribution, with a higher concentration near the specimen surface. As the supply of culture medium discontinued, the dextran content near the surface produced by the pouring method decreased dramatically due to high competition for nutrients with foreign colonies. Average dextran concentration was negatively and correlated with hydraulic conductivity of bio-mediated soils exponentially, due to the clogging of large soil pores by dextran. The hydraulic conductivity of the injection and mixing cases did not change significantly when the supply of culture medium was absent.
期刊介绍:
The Journal of Rock Mechanics and Geotechnical Engineering (JRMGE), overseen by the Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, is dedicated to the latest advancements in rock mechanics and geotechnical engineering. It serves as a platform for global scholars to stay updated on developments in various related fields including soil mechanics, foundation engineering, civil engineering, mining engineering, hydraulic engineering, petroleum engineering, and engineering geology. With a focus on fostering international academic exchange, JRMGE acts as a conduit between theoretical advancements and practical applications. Topics covered include new theories, technologies, methods, experiences, in-situ and laboratory tests, developments, case studies, and timely reviews within the realm of rock mechanics and geotechnical engineering.