{"title":"在200/300 mm中试线环境中用于DUV光刻的水溶性生物源抗蚀剂","authors":"Isabelle Servin , Alexandre Teolis , Arnaud Bazin , Paule Durin , Olha Sysova , Corinne Gablin , Benoît Saudet , Didier Leonard , Olivier Soppera , Jean-Louis Leclercq , Yann Chevolot , Raluca Tiron , Thierry Delair , Stéphane Trombotto","doi":"10.1016/j.mne.2023.100202","DOIUrl":null,"url":null,"abstract":"<div><p>Water-based bio-sourced resists are promising candidates as alternatives for deep ultraviolet (DUV) lithography by replacing current photoresists issued from petro-chemistry for microelectronics application. Chitosan films produced from seafood industry wastes enable patterning processes free of organic solvent and alkali-based developers, by substitution with water. After demonstrating high-resolution patterning at lab-scale after transfer into silica 10 mm wafer, we investigate here the industrial pre-transfer chitosan-based photoresist on the 300 mm pilot line scale at CEA-Leti for 193 nm DUV lithography.</p></div>","PeriodicalId":37111,"journal":{"name":"Micro and Nano Engineering","volume":"19 ","pages":"Article 100202"},"PeriodicalIF":2.8000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Water-soluble bio-sourced resists for DUV lithography in a 200/300 mm pilot line environment\",\"authors\":\"Isabelle Servin , Alexandre Teolis , Arnaud Bazin , Paule Durin , Olha Sysova , Corinne Gablin , Benoît Saudet , Didier Leonard , Olivier Soppera , Jean-Louis Leclercq , Yann Chevolot , Raluca Tiron , Thierry Delair , Stéphane Trombotto\",\"doi\":\"10.1016/j.mne.2023.100202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Water-based bio-sourced resists are promising candidates as alternatives for deep ultraviolet (DUV) lithography by replacing current photoresists issued from petro-chemistry for microelectronics application. Chitosan films produced from seafood industry wastes enable patterning processes free of organic solvent and alkali-based developers, by substitution with water. After demonstrating high-resolution patterning at lab-scale after transfer into silica 10 mm wafer, we investigate here the industrial pre-transfer chitosan-based photoresist on the 300 mm pilot line scale at CEA-Leti for 193 nm DUV lithography.</p></div>\",\"PeriodicalId\":37111,\"journal\":{\"name\":\"Micro and Nano Engineering\",\"volume\":\"19 \",\"pages\":\"Article 100202\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nano Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590007223000321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nano Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590007223000321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Water-soluble bio-sourced resists for DUV lithography in a 200/300 mm pilot line environment
Water-based bio-sourced resists are promising candidates as alternatives for deep ultraviolet (DUV) lithography by replacing current photoresists issued from petro-chemistry for microelectronics application. Chitosan films produced from seafood industry wastes enable patterning processes free of organic solvent and alkali-based developers, by substitution with water. After demonstrating high-resolution patterning at lab-scale after transfer into silica 10 mm wafer, we investigate here the industrial pre-transfer chitosan-based photoresist on the 300 mm pilot line scale at CEA-Leti for 193 nm DUV lithography.